	4	$\Omega\Omega$
₹Ť.	11	28

Reg. No	***************************************
Name	

M.TECH. DEGREE EXAMINATION, APRIL/MAY 2014

First Semester

Branch: Electronics and Communication Engineering

Specialisation: VLSI and Embedded Systems

MECVE 102—CMOS ANALOG 1C—I

(Regular—2013 Admissions)

Time: Three Hours

Maximum: 100 Marks

Answer all questions.
Each question carries 25 marks.

- 1. (a) Draw cascade current mirror and derive sensitivity expression for a CMOS current mirror.
 - (b) Explain with example: Current source self-biasing.

(12 + 13 = 25 marks)

Or

- 2. (a) Design a 2.5 V reference using MOSFET only voltage divider assuming $V_{DD} = +5$ V and $V_{ss} = 0$ V. Also determine the temperature coefficient of reference.
 - (b) Explain advanced voltage references in brief.
- 3. (a) Explain the concept of noise bandwidth for a differential amplifier.
 - (b) Explain wide wing differential amplifiers.

(12 + 13 = 25 marks)

Or

- 4. (a) Explain current differential amplifier.
 - (b) Explain CMOS Class AB output stage.
- 5. (a) Explain source cross couple pair.
 - (b) What is the significance of CMRR of differential amplifier?

(12 + 13 = 25 marks)

Or

- 6. (a) Explain differential amplifier with source follower as an output stage.
 - (b) Compare basic configurations of single stage amplifiers.
- 7. (a) What are the types of noise? Which one is significant most? Why?
 - (b) State the types of noise. Explain how noise is represented in circuits.

(12 + 13 = 25 marks)

Or

- 8. (a) Explain thermal noise and noise in differential pairs.
 - (b) Explain the effect of noise in Common Gate stage.

 $[4 \times 25 = 100 \text{ marks}]$

G	1	1	5	U
U	T	1	U	v

Reg.	No
Moine	

M.TECH. DEGREE EXAMINATION, APRIL/MAY 2014

First Semester

Branch: Electronics and Communication Engineering

Specialization: VLSI and Embedded Systems

MECVE 103 - CMOS DIGITAL DESIGN - I

(Regular - 2013 Admissions)

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

Each full question carries 25 marks.

- 1. (a) Explain delay in multistage logic networks.
 - (b) Write down the limitations of logical effort.

(15 + 10 = 25 marks)

Or

- 2. (a) Explain pass transistor DC characteristics in detail.
 - (b) Explain in detail about delay models.

(10 + 15 = 25 marks)

- 3. (a) Explain in detail about low swing signaling.
 - (b) Discuss the logical effort with wires.

(15 + 10 = 25 marks)

Or

- 4. (a) Explain cross talk and what are the techniques used to control the cross talk in interconnect wires.
 - (b) Explain on various interconnect parasitic effects in detail.

(15 + 10 = 25 marks)

- 5. (a) Explain multi output Domino logic in detail.
 - (b) Write down the advantages and disadvantages of SOI.

(15 + 10 = 25 marks)

Or

6. Explain in detail: (a) NORA; (b) TSPC.

(25 marks)

- (a) How Kernighan-Lin algorithm can be used for partitioning? Explain with a suitable example.
 - (b) Explain full custom flow with the help of design flow chart.

(15 + 10 = 25 marks)

Or

- (a) Explain global routing and detailed routing with an example.
 - (b) Explain design for testability in detail.

(15 + 10 = 25 marks)

 $[4 \times 25 = 100 \text{ marks}]$

MICOVE 102 - CMOS BIGITAL DESIGN - I

remoneration that more than to determ of formation build and the matter beautiful more realized. (a)

173

Reg. No	
Nama	

M.TECH. DEGREE EXAMINATION, APRIL/MAY 2014

First Semester

Branch: Electronics and Communication

Specialization: VLSI and Embedded Systems

MECVE 104 - EMBEDDED SYSTEM HARDWARE ARCHITECTURE - I

(Regular - 2013 Admissions)

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

Each question carries 25 marks.

- 1. (a) Classify MCU's in detail.
 - (b) Compare microprocessor and microcontroller.
 - (c) Write a short note on brain machine interface.

(10 + 10 + 5 = 25 marks)

Or

2. Explain embedded system architecture in detail. Give an example for embedded systems and explain in detail.

(25 marks)

- 3. (a) Explain ISA architecture models.
 - (b) Discuss the SSEM.

(15 + 10 = 25 marks)

Or

- 4. Write a short notes on:
 - (a) Processor performance bench marks.
 - (b) Importance of reading a schematic.

(25 marks)

5. Explain an embedded board memory in detail.

(25 marks)

Or

- 6. (a) Discuss the direct memory access.
 - (b) Explain the memory spaces.

(15 + 10 = 25 marks)

g 1173

- 7. (a) Explain bus arbitration and timing.
 - (b) Explain the bus performance.

(15 + 10 = 25 marks)

Or

- 8. (a) Explain in detail about IEEE 802.111 wireless LAN serial 110 standard.
 - (b) Explain in detail about 12C bus with the help of required timing diagrams.

(15 + 10 = 25 marks)

 $[4 \times 25 = 100 \text{ marks}]$

Machine 199 Marke

-traileng lin volta.A

rescious of elemen managed dury

(Regular - 1913 Admidulous)

raffordionrator ban tomographic

months and an experience of the product of the

and handers habbadone not sequente an event flages; of contrastions making babbadoes employed

liquin assistant area ASI affilia

(e): Diamed the SSRM

of the sortenes of relative a selected to

-other heart

all that is a remain when the property of the property of

75 mzzr

O Discounties their bearing parents.

the state of the s

m.80 = 01 - 01)

avo man'i

C	1	2	በ	1
U	Л.	\angle	v	JŁ.

Reg.	No

M.TECH. DEGREE EXAMINATION, APRIL/MAY 2014

First Semester

Branch: Electronics and Communication Engineering

Specialization: VLSI and Embedded Systems

MECVE 105-2 - VLSI PROCESS TECHNOLOGY

(Regular - 2013 Admissions)

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

Each full question carries 25 marks.

- 1. (a) Explain in detail about the hot processing and state the microscopic models.
 - (b) Briefly explain the semiconductor substrates for IC fabrication.

(12 + 13 = 25 marks)

Or

- 2. (a) Explain the need of thin film grown techniques and its types.
 - (b) Explain the Fick's second law of diffusion.

(12 + 13 = 25 marks)

- 3. (a) Explain the working principle of MOCVD.
 - (b) Explain the importance of implantation modelling.

(12 + 13 = 25 marks)

Or

- 4. (a) Briefly explain the working mechanism of PECVD.
 - (b) Explain the working mechanism and applications of MBE.

(12 + 13 = 25 marks)

- 5. (a) Discuss in detail about the non-optical lithography.
 - (b) Briefly explain the photoresists and state the polymeric material properties.

(12 + 13 = 25 marks)

Or

- 6. (a) Describe in detail about the advanced lithographic techniques.
 - (b) Discuss the chemical polishing technology.

(12 + 13 = 25 marks)

- 7. (a) State the applications of the VLSI interconnect.
 - (b) Explain the importance of MEMS technology.

(15 + 10 = 25 marks)

 O_{l}

- 8. (a) State the different stages of fabrication of MEMS.
 - (b) Write in detail about the device Isolation.

(15 + 10 = 25 marks)

 $[4 \times 25 = 100 \text{ marks}]$

C	1	2/12
V T	- 1	Z45

Reg.	No

M.TECH. DEGREE EXAMINATION, APRIL/MAY 2014

First Semester

Branch: Electronics and Communication Engineering

Specialization: VLSI and Embedded Systems

MECVE 106-1 - VLSI CAD

(Regular – 2013 Admissions)

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

Each full question carries 25 marks.

- 1. (a) Explain in detail about the physical design automation.
 - (b) State the Bellmann-Ford algorithm.

(12 + 13 = 25 marks)

Or

- 2. (a) Explain the steps involved different graph algorithms.
 - (b) Explain the design rules present in the case of physical design.

(12 + 13 = 25 marks)

- 3. (a) Explain the constructive placement and iterative improvement.
 - (b) Explain the classification of partitioning algorithms.

(12 + 13 = 25 marks)

Or

- 4. (a) Briefly explain the classification of partitioning algorithms.
 - (b) Explain the algorithmic steps present in simulated annealing using an example.

(12 + 13 = 25 marks)

- 5. (a) Discuss in detail about the optimal channel pin assignment algorithm.
 - (b) Explain the concept and terminology and floor plan representation.

(12 + 13 = 25 marks)

Or

- 6. (a) Describe the problems in floor planning.
 - (b) Describe in detail the integer programming based floor planning.

(12 + 13 = 25 marks)

- 7. (a) State the channel routing algorithms.
 - (b) Explain the left edge algorithm.

(15 + 10 = 25 marks)

Or

- 8. (a) State the global routing and its applications.
 - (b) Write in detail about the maze's algorithm.

(15 + 10 = 25 marks)

 $[4 \times 25 = 100 \text{ marks}]$