
CS201: DISCRETE COMPUTATIONAL STRUCTURES Semester III

Module II

Syllabus: Review of Permutations and combinations, Principle of inclusion exclusion, Pigeon Hole Principle,

Recurrence Relations: Introduction- Linear recurrence relations with constant coefficients - Homogeneous solutions
- Particular solutions - Total solutions

Algebraic systems:- Semigroups and monoids - Homomorphism, Subsemigroups and submonoids
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2.1 Review of Permutations and combinations

Definition 2.1 If we have a ways of doing something and b ways of doing another thing and we can not do both at the
same time, then there are a+ b ways to choose one of the actions.

Example:

A woman has decided to shop at one store today, either in the north part of town or the south part of town. If she visits
the north part of town, she will shop at either a mall, a furniture store, or a jewellery store (3 ways). If she visits the
south part of town then she will shop at either a clothing store or a shoe store (2 ways).

Thus there are 3 + 2 = 5 possible shops the woman could end up shopping at today.

Definition 2.2 If there are a ways of doing something and b ways of doing another thing, then there are axb ways of
performing both actions.
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Example:

A drama club is holding audition for a play. Six men and Eight women came for auditioning. The director can cast the
leading couple in 6 ∗ 8 = 48 ways.

2.1.1 Permutations

Definition 2.3 Given a collection of n objects, the arrangements of these objects is called a permutation. If there are
n objects and number of permutation of size r is given by n!

(n−r)!

Example:

In a class of 10 students, 5 are to be chosen and seated in a row for a picture. Howmany such arrangements are possible?

Of the 5 position, any of the 10 can take the first position. For the second position any of the remaining 9 can take.
Continuing this way fifth position can be occupied from a possibility of 6 students. Then the number of arrangements
is given by

10 ∗ 9 ∗ 8 ∗ 7 ∗ 6

By the definition of permutation, the number of permutations of size 5 for the 10 students is given by 10!
(10−5)!

2.1.2 Combinations

Definition 2.4 Number of possible combinations of r objects from a set of n objects

n!

r!(n− r)!

When order is relevant we think in terms of permutations. When order is not relevant combinations could be
used.

2.2 Recurrence Relation

Recurrence relations are those functions which depends on some of the prior terms. A numeric function can be de-
scribed by a recurrence relation together with an appropriate set of boundary conditions. The numeric function is also
referred to as the solution of the recurrence relation.

2.2.1 Linear recurrence relations with Constant Coefficients

A recurrence relation of the form c0ar + c1ar−1 + c2ar−2 + c3ar−3 + . . .+ ckar−k = f(r). where ci’s are constants,
is called a linear recurrence relation with constant coeffidents. Above recurrence relation is known as a kth-order
recurrence relation, provided that both C0 and Ck are nonzero.

2.2.2 Homogeneous solutions

The (total) solution of a linear difference equation with constant coefficients is the sum of two parts, the homogeneous
solution, which satisfies the difference equation when the right-hand side of the equation is set to 0, and the particular
solution, which satisfies the difference equation with f(r) on the right-hand side. The discrete numeric function that is
the solution of the difference equation is the sum of two discrete numeric functions - one is the homogeneous solution
and the other is the particular solution.
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Let a(h) = (a
(h)
0 , a

(h)
1 , . . . , a

(h)
r , . . .) denote the homogeneous solution and a(p) = (a

(p)
0 , a

(p)
1 , . . . , a

(p)
r , . . .) denote

the particular solution to the difference equation.

c0a
(h)
r + c1a

(h)
r−1 + c2a

(h)
r−2 + c3a

(h)
r−2 + . . .+ cka

(h)
r−k = 0

and

c0a
(p)
r + c1a

(p)
r−1 + c2a

(p)
r−2 + c3a

(p)
r−2 + . . .+ cka

(p)
r−k = f(r)

Total solution is

a = a(h) + a(p)

A homogeneous solution of a linear difference equation with constant coefficients is of the form Aαr
1 where α1 is

called a characteristic root and A is a constant determined by the boundary conditions. Substituting Aαr for ar in the
difference equation with the right-hand side of the equation set to 0, we obtain

c0Aα
r + c1Aα

r−1 + c2Aα
r−2 + c3Aα

r−3 + . . .+ ckAα
r−k = 0

which can be simplified to

c0α
r + c1α

r−1 + c2α
r−2 + c3α

r−3 + . . .+ ckα
r−k = 0

The above equation is called the characteristic equation of the difference equation. Therefore, if α! is one of the roots
of the characteristic equation (it is for this reason that a! is called a characteristic root),Aαr

1 is a homogeneous solution
to the difference equation. A characteristic equation of kth degree hasK characteristic roots.

Example: The recurrence relation for the Fibonacci sequence is

ar = ar−1 + ar−2

The corresponding characteristic equation is

We have

ar = ar−1 + ar−2

ar = ar−1 + ar−2 (2.1)
αr = αr−1 + αr−2 (2.2)

αr−(r−2) = α(r−1)−(r−2) + α(r−2)−(r−2) (2.3)
α2 = α1 + α0 (2.4)

α2 − α− 1 = 0 (2.5)
(2.6)

This has two solutions

α1 = 1+
√
5

2 α2 = 1−
√
5

2

Therefore the homogeneous solution is
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a(h)r = A1

(
1 +
√

5

2

)r

+A2

(
1−
√

5

2

)r

Two constants A1 and A2 are to be determined from the boundary conditions a0 = 1 and a1 = 1.

2.2.3 Particular solutions

There is no general procedure for determining the particular solution of a difference equation. However, in simple
cases, this solution can be obtained by the method of inspection.

case 1: If RHS f(r) = β, where β is a constant , then take particular Solution as a(p)r = P.Where P is a constant to
be determined.

Example: Consider the relation

ar − 5ar−1 + 6ar−2 = 1

Since f(r) is a constant , the particular solution will also be a constant P. Substituting P in LHS

P − 5P + 6P = 1

P = 1/2

ar(p) = 1/2

case 2: When f(r) is of the form of a polynomial of degree t in r

F1r
t + F2r

t−1 + . . .+ Ftr + Ft+1

The corresponding particular solution will be of the form

P1r
t + P2r

t−1 + . . .+ Ptr + Pt+1

Example: Consider the relation

ar + 5ar−1 + 6ar−2 = 3r2

We assume that the general form of the particular solution is

P1r
2 + P2r + P3

Where P1 , P2 and P3 are constants to be determined . Substituting the expression into LHS we obtain,

P1r
2 + P2r + P3 + 5P1(r − 1)2 + 5P2(r − 1) + 5P3 + 6P1(r − 2)2 + 6P2(r − 2) + 6P3

which simplifies to

12P1r
2 − (34P1 − 12P2)r + (29P1 − 17P2 + 12p3)

comparing with RHS

12P1 = 3

34P1 − 12P2 = 0

29P1 − 17P2 + 12P3 = 0

P1 = 1/4;P2 = 17/24;P3 = 115/288
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So particular solution is

a(p)=r (1/4)r2 + (17/24)r + (115/288)

case 3: When f(r) is of the form βr , then corresponding particular solution is of the form Pβr, if β is not a charac-
teristic root of the recurrence relation.

example : Consider the recurrence relation
ar + ar−1 = 3r2r

The general form of the particular solution is

(P1r + P2)2r

substituting into LHS we obtain,

(P1r + P2)2r + [P1(r − 1) + P2]2r−1 = 3r2r

Comparing both sides ,

(3/2)P1 = 3

(−1/2)P1 + (3/2)P2 = 0

P1 = 2

P2 = 2/3

a(p)r = (2r + 2/3)2r

case 4:

When f(r) is of the form βr , and β is a characteristic root of multiplicitym−1, then corresponding particular solution
is of the form rm−1(P1r

t + P2r
t−1 + . . .+ Ptr + Pt+1)βr

Example: Find particular solution of the difference equation ar − 2ar−1 = 3.2r

Assume general form of the solution is

rm−1(P1r
2 + P2r + P3)βr

, where P1, P2, P3 are constants to be determined.

Substituting the assumed solution to the given equation we get

Pr2r

(Because 2 is a characteristic root of multiplicity 1)

Pr2r − 2P (r − 1)2r−1 = 3.2r

P.2r = 3.2r
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P = 3

Thus particular solution is

a(p)r = 3r2r

2.2.4 Total Solutions

We must combine the homogeneous solution and the particular solution and determine the undetermined coefficients
in the homogeneous solution.

Example : Consider the recurrence relation

ar − 5ar−1 + 6ar−2 − 5 = 1

Characteristic equation is
α2 − 5α+ 6 = 0

α1 = 3

α2 = 2

Thus homogeneous solution
ar(h) = A13r +A22r

Since f(r) is a constant ,
ar(p) = P

P − 5P + 6P = 1

P = 1/2

Total solution = Homogeneous solution + Particular solution

ar = A13r +A22r + 1/2

2.3 Algebraic Systems

Definition 2.5 A system consisting of a non-empty set and one ormore n-ary operations on the set is called an Algebraic
System. An Algebraic System will be denoted by S, f1, f2...., when S is the non-empty set and f1, f2... are n-ary
operations on S.

General Properties of Algebraic Systems

Let S, ∗,⊕ be an algebraic system ,where ∗ and ⊕ are binary operations on S. (Not necessarily usual addition and
multiplication).

Closure Property

For any a, b ∈ S, a ∗ b ∈ S.

Associativity

For any a, b ∈ S, (a ∗ b) ∗ c = a ∗ (b ∗ c)

Commutativity
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for any a, b ∈ S, a ∗ b = b ∗ a

Identity Element

There exists a distinguished element e ∈ S , such that for any a ∈ S, a ∗ e = e ∗ a = a

Inverse Element

For each a ∈ S , there exists an element a−1 ∈ S such that a ∗ a−1 = a−1 ∗ a = e.

The element a−1 ∈ S is called the inverse of a under operation ∗.

Distributivity

for any a, b, c ∈ S, a ∗ (b⊕ c) = a ∗ b⊕ a ∗ c In this case ∗ is said to be distributive over ⊕

Example :

The algebraic system (z,+, .) with usual addition and multiplication satisfies all properties. (z,+, .) satisfies Associa-
tive property for + and . , Commutative property for + and . , and Distributive law . Identity element is 0 for addition
and 1 for multiplication. For each element , there exists an element negative of a, also called inverse element.

2.3.1 Semigroups and Monoids

Definition 2.6 A semigroup is a non-empty set S together with an associative binary operation ∗ defined on S. We
shall denote the semigroup by (S, ∗) , ( when it is clear what the operation ∗ is, simply by S)

If * is commutative then the semigroup is said to be commutative or abelian semigroup.

Definition 2.7 A monoid is a semigroup (S, ∗) that has an identity φ.

Example 1: Let z+ be the set of positive integers {1, 2, 3, 4...}. Then (z+,+) is a semigroup with usual binary
operation of addition. However (z+,+) is not a monoid since there is no additive identity. Note that (z+,+) is a
commutative semigroup.

Example 2:

LetN ={0,1,2,3...} be the set of natural numbers.Then (N,+) is a commutative monoid with identity e = 1. Obviously
(N,+1) is an abelian semigroup.

2.3.2 Homomorphism

Definition 2.8 Let (S, ∗) and (T,∆) be any two semigroup. A function f : S −→ T is called semigroup homomor-
phism if for any two elements a, b ∈ s we have

f(a ∗ b) = f(a)∆f(b)

If f is one -to-one , onto or one-to-one onto then the semigroup homomorphism is known as semigroup monomorphism
, epimorphism or isomorphism, respectively.If there is a semigroup isomorphism fromS onto T then the two semigroup
(S, ∗) and (T,∆) are said to be isomorphic.

2.3.3 Subsemigroups and Submonoids

Definition 2.9 Let (S,*) be a semigroup and let T be a subset of S. If T is closed under the operation * (that is , a*b ∈
T , whenever a and b are elements of T) then (T,*) is called a subsemigroup of (S,*).

Similarly let (S,*) be a monoid with identity e ∈ T , and let T be a non-empty subset of S. If T is closed under operation
* and e∈ T , then (T,*) is called a submonoid of (S,*).
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Example 1:

For the semigroup (N,+), (z+,+) is a subsemigroup since z+ the set of positive integers {1, 2, 3...} is a subset of N
and Z+ is closed under operation +.

Example 2:

For the semigroup (N,+), (T,+) where T is the set of odd integers {1,3,5...} is not a subsemigroup since T is not
closed under the binary operation + . (sum of two odd numbers is even)

Example 3:

For the monoid (R, ., 1) the set of real numbers ,(N, ., 1) the set of natural numbers is a submonoid since N subset of
R,N is closed under . and identity 1 ∈ N , whereas (E, .) where E is set of even positive integers is not a submonoid
since identity 1 /∈ E although E subset of R , and E is closed under .
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