CS201: DISCRETE COMPUTATIONAL STRUCTURES Semester ITI
Module III

Syllabus: Algebraic Systems:- Groups, definition and elementary properties , subgroups, Homomprphism and Isomor-
phism , Generators -Cyclic groups , Cosets and Langrange’s Theorem Algebraic systems with two binary operations
-rings,fields- sub rings, ring homomorphism

Disclaimer: These may be distributed outside this class only with the permission of the Instructor.
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1.1 Groups

Group is special type of Monoid that has applications in Mathematics, Physics,and Chemistry etc.

Definition and Elementary properties

Definition 1.1 A Group (G, *) is a monoid Wlth ldentlty e, that has the additional property that for every element
a € G there exists an element @' such thata xd' = a *a = e.

Thus a Group is a set together with binary operation * on G such that

1. a*xb € G. (Closure of G under *)
2. (axb)*c=ax*(bxc) for any elementsa, b,and ¢ in G. (The associative Property)

3. There is a unique element e in G such that a * e = e * a for any a € G . (The existance of an Identity)



4. For every a € G, there is an element a e G, called inverse of a such that a * ad =ad xa=e .(The existance of
Inverse)

We shall write the product a * b of the elements a and b in the group (G, %) simply as ab ,and we shall also refer to
(G, ) simply as G. A Group is said to be Abelian if ab = ba for all elements ¢ and b in G.
Example 1:

The set of integers Z , The set of rational numbers () , and the set of Real numbers R are all groups under ordinary
addition. In each case , the Identity is 0 and inverse of a is —a.

Example 2:

The set of integers under ordinary multiplication is not a group. Since the number 1 is the identity , property of inverse
fails. For example, there is no integer b such that 5b = 1.

Example 3:

The set QT of positive rationals is a group under ordinary multiplication. The inverse of any a is 1/a = a L.

1.2 Subgroups

Definition 1.2 Let H be a subset of a Group G such that

o The identity e of G belongs to H
e [faandb belong to H , then ab € H

e [fae H, thena=' € H

Then H is called a subgroup of G.

For any element a, from a group we let < a > denote the set {a™|n € Z}.

Let G be a group, and let a be any element of G. Then ,< a > is a subgroup of G.

1.3 Isomorphism and Homomorphism

Let (S, %) and (T, %) be two semigroups . A function f : S — T is called an Isomorphism from (S, %) to (T, % ) if it
is a one-to-one correspondance from S to T" ,and if f(a *b) = f(a) * f(b) foralla,bin S.

Let (5, *) and (T, */) be two semigroups .An every-where defined functionf : S — T is called Homomorphism from
(S,%)to (T,* ) if f(a*b) = f(a)+" f(b)forall ¢ and bin S.

Iff is onto, we say that 7" is a homomorphic image of S.
1.4 Cyclic Group

Definition 1.3 A group that has a generating set consisting of a single element is known as a Cyclic Group. A group
G is called cyclic if there is an element x € G , such that for each a € G,a = x™ for some n € Z.

Such an element x is called a generator of G.

We may indicate that G is a cyclic group generated by x, by writing G =< = >.
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Example: For the example of the rotation of geometric figures in the plane, the group {0, 60, 120, 180, 240, 300, % }
is a cyclic group.

Example: The group H = (Z4, +) is cyclic. Here, the operation is addition ,so we have multiples instead of powers .

we find that both [1] and [3] generate H. For the case of [3] ,we have 1.[3]=[3], 2.[3]1(=[3]+[3])=[2], 3.[3]=[1], and
4.[3]=[0] .

Hence H=<[3]>=<[1]>.

Example: Consider the multiplicative group , Uy = 1,2,4,5,7,8 . Here we find that 2! = 2,22 = 4,23 = §,2% =
7,25 =596 — 1.

So Uy is a cyclic group of order 6 and Uy =< 2 >.It is also true that Uy =< 5 > because 5! = 5,52 = 7,5% =
8,54 =4,5°=250=1.

1.5 Cosets and Lagrange’s Theorem

Let { A, %} be an algebraic system , where s is a binary operation.Let a be an element in A and H be a subset of A.
The left coset of H with respect to a , which we shall denote a% H is the set of elements {a¥kx | x € H} .

Similarly the right coset of H with respect to a , which we shall denote H %« is the set of elements {x%a | x € H} .
Example 1

Let G = S3 and H{(1),(13)} . Then the left coset of H in G are:

()H=H

(12)H = {(12), (12)
(13)H = {(13), (1)}
(28)H = {(23), (23)

(13)} = {(12), (132)} = (132)H
=H
1 =

(13)} = |(23), (123) = (123)H
Example 2:

Let H = {0, 3,6} inZy under addition. In the case that the group operation is addition , we use the notation a + H
instead of ¢ H . Then the cosets of H in Zg are:

0+H=1{0,3,6l =3+H =6+ H,
1+H={1,4,7=4+H="T7+H,
24+ H={2,58 =5+H=8+H

Langrange’s Theorem

Definition 1.4 If G is a finite group of order n with H a subgroup of order m., then m divides n.

1.6 Algebraic Systems with two binary properties

1.6.1 Rings

Definition 1.5 Let S be a non empty set with two binary operations + and x such that (S, +) is an Abelian Group and
* is distributive over +.The structure (S, +, %) is called a Ring if * is associative. If x is associative and commutative
, we call (S, +, x) a commutative ring. If (S, ) is a monoid then (S, +, *) is a ring with identity.

Example: The set Z of integers under ordinary addition and multiplication is a commutative ring with unity 1 . The
units of Z are 1 and -1.
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Example The set Z,, = {0, 1, ....n — 1} under addition and multiplication modulo n is a commutative ring with unity
1.

1.6.2 Fields

Definition 1.6 Suppose that F is a commutative ring with identity . We say that F is a Field if every nonzero element
x in F has a multiplicative inverse.

Field Properties F' has two binary operations ; an addition + and a multiplication *, and has two special elements
denoted by 0 and 1, so that for all ,y and z in F.

l.z+y=y+=z

2. xxYy=yYx*z

3. (@ty)tz=z+(y+2)

4. (xxy)xz=x*(y*2)

S5.24+0==x

6. zxl==x

T xzx(y+z2)=(zxy)+ (z*2)

8. (y+z)xax=(y*xz)+ (2*x)

9. For each z in F there is a unique element in F'denoted by —z so that x + (—x) =0

10. For each  # 0 in F there is a unique element in F' denoted by 2! so that z x 71 =1

Example :

For every prime p, Z,, , the ring of integers modulo p , is a field.

1.7 Subrings

A name can be given to the subsets of a ring which are themselves rings, just like in case of groups. So a non empty
subset B of a ring A with respect to operation + and is a subring of A if and only if B satisfies all conditions needed
for a ring.

Definition 1.7 Let be A ring and B a nonempty subset of A. Then (B, +, *) is a subring of (A, +, *) if and only if

e a+be B, foralla,b e B,
e —a€ B, foracB,

e axbe B, fora,be B
Properties of Subrings

1. Every ring has two trivial subrings: the ring itself and the set 0
2. A subring of a commutative ring is a commutative ring.

3. If A is aring and Bi is an arbitrary collection of subrings of A, then Bi is a subring of A.

4 CS201



4. If Ais aring and B is a subset of A then, the intersection of all subrings of A that contains B , is a subring of A.
It is called the subring generated by B.

5. A subring of a is a ring in its own right.

Example 1: {0} and R are subrings of any ring R.{0} is called the trivial subring of R.
Example 2: {0, 2,4} is a subring of the ring Zg, the integers modulo 6.

1.8 Ring Homomorphism

Definition 1.8 A ring homorphism ¢ from a ring R to ring S is a mapping from R to S that preserves the two ring
operations ; that is , for all a,bin R,

¢(a+b) = ¢(a) + ¢(b)

and ¢(ab) = ¢(a)¢(b)

A ring homomorphism that is both one-to-one and onto is called ring isomorphism.

An isomorphism is used to show that two rings are algebraically identical; a homomorphism is used to simplify a ring
while retaining certain of its features.

Properties of Ring Homomorphism

1. For any r € R and any positive integer n, ¢(nr) = no(r) and ¢(r™) = ((r))™
2. ¢(A) = {¢(a)|a € A} is a subring of S.

3. If Ais anideal and ¢ is onto .S, then ¢(A) is an ideal.

¢~ 1(B) = {r € R|¢(r) € B} is an ideal of R.

If R is commutative , then ¢(R) is commutative.

If R has a unity 1, S # {0}, and ¢ is onto, then ¢(1) is the unity of S

S A

¢ is an isomorphism if and only if ¢ is onto and Ker¢ = {r € R|¢(r) = 0} = {0}

8. If ¢ is an isomorphism from R to S , then ¢! is an isomorphism from S onto R.

Example 1:

For any positive integer n, the mapping & — &k mod n is a ring homomorphism from Z to Z,,. This mapping is called
the natural homomorphism from Z to Z,,.

Example 2:

The mapping a 4+ bi — a — bt is a ring isomorphism from complex numbers onto the complex numbers.
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