
CS201: DISCRETE COMPUTATIONAL STRUCTURES Semester III

Module III

Syllabus: Algebraic Systems:- Groups, definition and elementary properties , subgroups, Homomprphism and Isomor-
phism , Generators -Cyclic groups , Cosets and Langrange’s Theorem Algebraic systems with two binary operations
-rings,fields- sub rings, ring homomorphism

Disclaimer: These may be distributed outside this class only with the permission of the Instructor.
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1.1 Groups

Group is special type of Monoid that has applications in Mathematics, Physics,and Chemistry etc.

Definition and Elementary properties

Definition 1.1 A Group (G, ∗) is a monoid ,with identity e, that has the additional property that for every element
a ∈ G there exists an element a′ such that a ∗ a′

= a
′ ∗ a = e.

Thus a Group is a set together with binary operation * on G such that

1. a ∗ b ∈ G. (Closure of G under *)

2. (a ∗ b) ∗ c = a ∗ (b ∗ c) for any elementsa, b,and c in G. (The associative Property)

3. There is a unique element e in G such that a ∗ e = e ∗ a for any a ∈ G . (The existance of an Identity)
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4. For every a ∈ G, there is an element a′ ∈ G, called inverse of a such that a ∗ a′
= a

′ ∗ a = e .(The existance of
Inverse)

We shall write the product a ∗ b of the elements a and b in the group (G, ∗) simply as ab ,and we shall also refer to
(G, ∗) simply as G. A Group is said to be Abelian if ab = ba for all elements a and b in G.

Example 1:

The set of integers Z , The set of rational numbers Q , and the set of Real numbers R are all groups under ordinary
addition. In each case , the Identity is 0 and inverse of a is −a.

Example 2:

The set of integers under ordinary multiplication is not a group. Since the number 1 is the identity , property of inverse
fails. For example, there is no integer b such that 5b = 1.

Example 3:

The set Q+ of positive rationals is a group under ordinary multiplication. The inverse of any a is 1/a = a−1.

1.2 Subgroups

Definition 1.2 Let H be a subset of a Group G such that

• The identity e of G belongs to H

• If a and b belong to H , then ab ∈ H

• If a ∈ H , then a−1 ∈ H

Then H is called a subgroup of G.

For any element a, from a group we let < a > denote the set {an|n ∈ Z}.

Let G be a group, and let a be any element of G. Then ,< a > is a subgroup of G.

1.3 Isomorphism and Homomorphism

Let (S, ∗) and (T, ∗′) be two semigroups . A function f : S → T is called an Isomorphism from (S, ∗) to (T, ∗′) if it
is a one-to-one correspondance from S to T ,and if f(a ∗ b) = f(a) ∗′ f(b) for all a, b in S.

Let (S, ∗) and (T, ∗′) be two semigroups .An every-where defined functionf : S → T is called Homomorphism from
(S, ∗) to (T, ∗′) if f(a ∗ b) = f(a) ∗′ f(b) for all a and b in S.

Iff is onto, we say that T is a homomorphic image of S.

1.4 Cyclic Group

Definition 1.3 A group that has a generating set consisting of a single element is known as a Cyclic Group. A group
G is called cyclic if there is an element x ∈ G , such that for each a ∈ G,a = xn for some n ∈ Z.

Such an element x is called a generator of G.

We may indicate that G is a cyclic group generated by x, by writing G =< x >.
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Example: For the example of the rotation of geometric figures in the plane, the group {0, 60, 120, 180, 240, 300,F}
is a cyclic group.

Example: The groupH = (Z4,+) is cyclic. Here, the operation is addition ,so we have multiples instead of powers .

we find that both [1] and [3] generate H. For the case of [3] ,we have 1.[3]=[3], 2.[3](=[3]+[3])=[2], 3.[3]=[1], and
4.[3]=[0] .

Hence H=<[3]>=<[1]>.

Example: Consider the multiplicative group , U9 = 1, 2, 4, 5, 7, 8 . Here we find that 21 = 2, 22 = 4, 23 = 8, 24 =
7, 25 = 5, 26 = 1.

So U9 is a cyclic group of order 6 and U9 =< 2 >.It is also true that U9 =< 5 > because 51 = 5, 52 = 7, 53 =
8, 54 = 4, 55 = 2, 56 = 1.

1.5 Cosets and Lagrange’s Theorem

Let {A,F} be an algebraic system , where F is a binary operation.Let a be an element in A and H be a subset of A.
The left coset of H with respect to a , which we shall denote aFH is the set of elements {aFx | x ∈ H} .

Similarly the right coset ofH with respect to a , which we shall denoteHFa is the set of elements {xFa | x ∈ H} .

Example 1

Let G = S3 and H{(1), (13)} . Then the left coset of H in G are:

(1)H = H

(12)H = {(12), (12)(13)} = {(12), (132)} = (132)H

(13)H = {(13), (1)} = H

(23)H = {(23), (23)(13)} = |(23), (123) = (123)H

Example 2:

Let H = {0, 3, 6} inZ9 under addition. In the case that the group operation is addition , we use the notation a + H
instead of aH . Then the cosets of H in Z9 are:

0 +H = {0, 3, 6} = 3 +H = 6 +H,

1 +H = {1, 4, 7} = 4 +H = 7 +H,

2 +H = {2, 5, 8} = 5 +H = 8 +H

Langrange’s Theorem

Definition 1.4 If G is a finite group of order n with H a subgroup of orderm , thenm divides n.

1.6 Algebraic Systems with two binary properties

1.6.1 Rings

Definition 1.5 Let S be a non empty set with two binary operations + and ∗ such that (S,+) is an Abelian Group and
∗ is distributive over +.The structure (S,+, ∗) is called a Ring if ∗ is associative. If ∗ is associative and commutative
, we call (S,+, ∗) a commutative ring. If (S, ∗) is a monoid then (S,+, ∗) is a ring with identity.

Example: The set Z of integers under ordinary addition and multiplication is a commutative ring with unity 1 . The
units of Z are 1 and -1.
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Example The set Zn = {0, 1, ....n− 1} under addition and multiplication modulo n is a commutative ring with unity
1.

1.6.2 Fields

Definition 1.6 Suppose that F is a commutative ring with identity . We say that F is a Field if every nonzero element
x in F has a multiplicative inverse.

Field Properties F has two binary operations ; an addition + and a multiplication ∗, and has two special elements
denoted by 0 and 1, so that for all x, y and z in F .

1. x+ y = y + x

2. x ∗ y = y ∗ x

3. (x+ y) + z = x+ (y + z)

4. (x ∗ y) ∗ z = x ∗ (y ∗ z)

5. x+ 0 = x

6. x ∗ 1 = x

7. x ∗ (y + z) = (x ∗ y) + (x ∗ z)

8. (y + z) ∗ x = (y ∗ x) + (z ∗ x)

9. For each x in F there is a unique element in Fdenoted by −x so that x+ (−x) = 0

10. For each x 6= 0 in F there is a unique element in F denoted by x−1 so that x ∗ x−1 = 1

Example :

For every prime p, Zp , the ring of integers modulo p , is a field.

1.7 Subrings

A name can be given to the subsets of a ring which are themselves rings, just like in case of groups. So a non empty
subset B of a ring A with respect to operation + and is a subring of A if and only if B satisfies all conditions needed
for a ring.

Definition 1.7 Let be A ring and B a nonempty subset of A. Then (B,+, ∗) is a subring of (A,+, ∗) if and only if

• a+ b ∈ B, for all a, b ∈ B,

• −a ∈ B , for a ∈ B,

• a ∗ b ∈ B , for a, b ∈ B

Properties of Subrings

1. Every ring has two trivial subrings: the ring itself and the set 0

2. A subring of a commutative ring is a commutative ring.

3. If A is a ring and Bi is an arbitrary collection of subrings of A, then Bi is a subring of A.
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4. If A is a ring and B is a subset of A then, the intersection of all subrings of A that contains B , is a subring of A.
It is called the subring generated by B.

5. A subring of a is a ring in its own right.

Example 1: {0} and R are subrings of any ring R.{0} is called the trivial subring of R.

Example 2: {0, 2, 4} is a subring of the ring Z6, the integers modulo 6.

1.8 Ring Homomorphism

Definition 1.8 A ring homorphism φ from a ring R to ring S is a mapping from R to S that preserves the two ring
operations ; that is , for all a, b in R,

φ(a+ b) = φ(a) + φ(b)

and φ(ab) = φ(a)φ(b)

A ring homomorphism that is both one-to-one and onto is called ring isomorphism.

An isomorphism is used to show that two rings are algebraically identical; a homomorphism is used to simplify a ring
while retaining certain of its features.

Properties of Ring Homomorphism

1. For any r ∈ R and any positive integer n, φ(nr) = nφ(r) and φ(rn) = (φ(r))n

2. φ(A) = {φ(a)|a ∈ A} is a subring of S.

3. If A is an ideal and φ is onto S , then φ(A) is an ideal.

4. φ−1(B) = {r ∈ R|φ(r) ∈ B} is an ideal of R.

5. If R is commutative , then φ(R) is commutative.

6. If R has a unity 1, S 6= {0} , and φ is onto, then φ(1) is the unity of S

7. φ is an isomorphism if and only if φ is onto andKerφ = {r ∈ R|φ(r) = 0} = {0}

8. If φ is an isomorphism from R to S , then φ−1 is an isomorphism from S onto R.

Example 1:

For any positive integer n, the mapping k −→ k mod n is a ring homomorphism from Z to Zn. This mapping is called
the natural homomorphism from Z to Zn.

Example 2:

The mapping a+ bi −→ a− bi is a ring isomorphism from complex numbers onto the complex numbers.
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