CS201: DISCRETE COMPUTATIONAL STRUCTURES

Module III

Syllabus: Algebraic Systems: - Groups, definition and elementary properties, subgroups, Homomprphism and Isomorphism, Generators -Cyclic groups, Cosets and Langrange's Theorem Algebraic systems with two binary operations -rings, fields- sub rings, ring homomorphism

Disclaimer: These may be distributed outside this class only with the permission of the Instructor.

Contents

1.1 Groups	1
1.2 Subgroups	2
1.3 Isomorphism and Homomorphism	2
1.4 Cyclic Group	3
1.5 Cosets and Lagrange's Theorem	3
1.6 Algebraic Systems with two binary properties	4
1.6.1 Rings	4
1.6.2 Fields	4
1.7 Subrings	4
1.8 Ring Homomorphism	5

1.1 Groups

Group is special type of Monoid that has applications in Mathematics, Physics, and Chemistry etc.

Definition and Elementary properties

Definition 1.1 A Group (G, *) is a monoid ,with identity e, that has the additional property that for every element $a \in G$ there exists an element a' such that a * a' = a' * a = e.

Thus a Group is a set together with binary operation * on G such that

- 1. $a * b \in G$. (Closure of G under *)
- 2. (a * b) * c = a * (b * c) for any elements a, b, and c in G. (The associative Property)
- 3. There is a unique element e in G such that a * e = e * a for any $a \in G$. (The existance of an Identity)

4. For every $a \in G$, there is an element $a' \in G$, called inverse of a such that a * a' = a' * a = e.(The existance of Inverse)

We shall write the product a * b of the elements a and b in the group (G, *) simply as ab, and we shall also refer to (G, *) simply as G. A Group is said to be Abelian if ab = ba for all elements a and b in G.

Example 1:

The set of integers Z , The set of rational numbers Q , and the set of Real numbers R are all groups under ordinary addition. In each case , the Identity is 0 and inverse of a is -a.

Example 2:

The set of integers under ordinary multiplication is not a group. Since the number 1 is the identity, property of inverse fails. For example, there is no integer b such that 5b = 1.

Example 3:

The set Q^+ of positive rationals is a group under ordinary multiplication. The inverse of any a is $1/a = a^{-1}$.

1.2 Subgroups

Definition 1.2 Let H be a subset of a Group G such that

- The identity e of G belongs to H
- If a and b belong to H, then $ab \in H$
- If $a \in H$, then $a^{-1} \in H$

Then H is called a subgroup of G.

For any element a, from a group we let $\langle a \rangle$ denote the set $\{a^n | n \in Z\}$.

Let G be a group, and let a be any element of G. Then a > is a subgroup of G.

1.3 Isomorphism and Homomorphism

Let (S, *) and (T, *') be two semigroups . A function $f: S \to T$ is called an Isomorphism from (S, *) to (T, *') if it is a one-to-one correspondance from S to T ,and if f(a * b) = f(a) *' f(b) for all a, b in S.

Let (S, *) and (T, *') be two semigroups .An every-where defined function $f: S \to T$ is called Homomorphism from (S, *) to (T, *') if f(a * b) = f(a) *' f(b) for all a and b in S.

If f is onto, we say that T is a homomorphic image of S.

1.4 Cyclic Group

Definition 1.3 A group that has a generating set consisting of a single element is known as a Cyclic Group. A group G is called cyclic if there is an element $x \in G$, such that for each $a \in G, a = x^n$ for some $n \in Z$.

Such an element x is called a **generator** of G.

We may indicate that G is a cyclic group generated by x, by writing $G = \langle x \rangle$.

Example: For the example of the rotation of geometric figures in the plane, the group $\{0, 60, 120, 180, 240, 300, \bigstar\}$ is a cyclic group.

Example: The group H = (Z4, +) is cyclic. Here, the operation is addition, so we have multiples instead of powers.

we find that both [1] and [3] generate H. For the case of [3], we have 1.[3]=[3], 2.[3](=[3]+[3])=[2], 3.[3]=[1], and 4.[3]=[0].

Hence H=<[3]>=<[1]>.

Example: Consider the multiplicative group , $U_9 = 1, 2, 4, 5, 7, 8$. Here we find that $2^1 = 2, 2^2 = 4, 2^3 = 8, 2^4 = 7, 2^5 = 5, 2^6 = 1$.

So U_9 is a cyclic group of order 6 and $U_9 = <2>$. It is also true that $U_9 = <5>$ because $5^1 = 5, 5^2 = 7, 5^3 = 8, 5^4 = 4, 5^5 = 2, 5^6 = 1$.

1.5 Cosets and Lagrange's Theorem

Let $\{A, \bigstar\}$ be an algebraic system, where \bigstar is a binary operation. Let a be an element in A and H be a subset of A. The left coset of H with respect to a, which we shall denote $a \bigstar H$ is the set of elements $\{a \bigstar x \mid x \in H\}$.

Similarly the right coset of H with respect to a, which we shall denote $H \bigstar a$ is the set of elements $\{x \bigstar a \mid x \in H\}$.

Example 1

Let $G = S_3$ and $H\{(1), (13)\}$. Then the left coset of H in G are:

$$(1)H = H$$

$$(12)H = \{(12), (12)(13)\} = \{(12), (132)\} = (132)H$$

 $(13)H = \{(13), (1)\} = H$

 $(23)H = \{(23), (23)(13)\} = |(23), (123) = (123)H$

Example 2:

Let $H = \{0, 3, 6\}$ in Z_9 under addition. In the case that the group operation is addition, we use the notation a + H instead of aH. Then the cosets of H in Z_9 are:

 $0 + H = \{0, 3, 6\} = 3 + H = 6 + H,$ $1 + H = \{1, 4, 7\} = 4 + H = 7 + H,$ $2 + H = \{2, 5, 8\} = 5 + H = 8 + H$

Langrange's Theorem

Definition 1.4 If G is a finite group of order n with H a subgroup of order m, then m divides n.

1.6 Algebraic Systems with two binary properties

1.6.1 Rings

Definition 1.5 Let S be a non empty set with two binary operations + and * such that (S, +) is an Abelian Group and * is distributive over +. The structure (S, +, *) is called a Ring if * is associative. If * is associative and commutative , we call (S, +, *) a commutative ring. If (S, *) is a monoid then (S, +, *) is a ring with identity.

Example: The set Z of integers under ordinary addition and multiplication is a commutative ring with unity 1. The units of Z are 1 and -1.

Example The set $Z_n = \{0, 1, ..., n-1\}$ under addition and multiplication modulo n is a commutative ring with unity 1.

1.6.2 Fields

Definition 1.6 Suppose that *F* is a commutative ring with identity. We say that *F* is a Field if every nonzero element *x* in *F* has a multiplicative inverse.

Field Properties F has two binary operations; an addition + and a multiplication *, and has two special elements denoted by 0 and 1, so that for all x, y and z in F.

- 1. x + y = y + x2. x * y = y * x3. (x + y) + z = x + (y + z)4. (x * y) * z = x * (y * z)5. x + 0 = x6. x * 1 = x7. x * (y + z) = (x * y) + (x * z)8. (y + z) * x = (y * x) + (z * x)
- 9. For each x in F there is a unique element in F denoted by -x so that x + (-x) = 0
- 10. For each $x \neq 0$ in F there is a unique element in F denoted by x^{-1} so that $x * x^{-1} = 1$

Example :

For every prime p, Z_p , the ring of integers modulo p, is a field.

1.7 Subrings

A name can be given to the subsets of a ring which are themselves rings, just like in case of groups. So a non empty subset B of a ring A with respect to operation + and is a subring of A if and only if B satisfies all conditions needed for a ring.

Definition 1.7 Let be A ring and B a nonempty subset of A. Then (B, +, *) is a subring of (A, +, *) if and only if

- $a + b \in B$, for all $a, b \in B$,
- $\bullet \ -a \in B \text{ , for } a \in B,$
- $a * b \in B$, for $a, b \in B$

Properties of Subrings

- 1. Every ring has two trivial subrings: the ring itself and the set 0
- 2. A subring of a commutative ring is a commutative ring.
- 3. If A is a ring and Bi is an arbitrary collection of subrings of A, then Bi is a subring of A.

- 4. If A is a ring and B is a subset of A then, the intersection of all subrings of A that contains B, is a subring of A. It is called the subring generated by B.
- 5. A subring of a is a ring in its own right.

Example 1: $\{0\}$ and R are subrings of any ring R. $\{0\}$ is called the trivial subring of R.

Example 2: $\{0, 2, 4\}$ is a subring of the ring Z_6 , the integers modulo 6.

1.8 Ring Homomorphism

Definition 1.8 A ring homorphism ϕ from a ring R to ring S is a mapping from R to S that preserves the two ring operations; that is, for all a, b in R,

 $\phi(a+b) = \phi(a) + \phi(b)$

and $\phi(ab) = \phi(a)\phi(b)$

A ring homomorphism that is both one-to-one and onto is called ring isomorphism.

An isomorphism is used to show that two rings are algebraically identical; a homomorphism is used to simplify a ring while retaining certain of its features.

Properties of Ring Homomorphism

- 1. For any $r \in R$ and any positive integer $n, \phi(nr) = n\phi(r)$ and $\phi(r^n) = (\phi(r))^n$
- 2. $\phi(A) = \{\phi(a) | a \in A\}$ is a subring of S.
- 3. If A is an ideal and ϕ is onto S , then $\phi(A)$ is an ideal.
- 4. $\phi^{-1}(B) = \{r \in R | \phi(r) \in B\}$ is an ideal of R.
- 5. If R is commutative , then $\phi(R)$ is commutative.
- 6. If R has a unity 1, $S \neq \{0\}$, and ϕ is onto, then $\phi(1)$ is the unity of S
- 7. ϕ is an isomorphism if and only if ϕ is onto and $Ker\phi = \{r \in R | \phi(r) = 0\} = \{0\}$
- 8. If ϕ is an isomorphism from R to S , then ϕ^{-1} is an isomorphism from S onto R.

Example 1:

For any positive integer n, the mapping $k \longrightarrow k \mod n$ is a ring homomorphism from Z to Z_n . This mapping is called the natural homomorphism from Z to Z_n .

Example 2:

The mapping $a + bi \longrightarrow a - bi$ is a ring isomorphism from complex numbers onto the complex numbers.