CS201: DISCRETE COMPUTATIONAL STRUCTURES Semester III

 \blacksquare

Module IV

Syllabus: *Lattices and Boolean Algebra: Lattices - Sublattices - Complete lattices - Bounded Lattices - Complemented Lattices - Distributive Lattices - Lattice Homomorphisms.*

Boolean algebra – sub algebra, direct product and homomorphisms

Disclaimer: *These may be distributed outside this class only with the permission of the Instructor.*

Federal Institute of Science And Technology (FISAT)

Contents

5.1 Lattices

Definition 5.1 *A lattice* is a poset (L, \leq) in which every subset $\{a, b\}$ consisting of two elements has a least upper bound *and a greatest lower bound.*

Least Upper Bound (LUB) of $({a, b})$ is denoted by $a \vee b$ and call its as join of *a* and *b*. Greatest Lower Bound (GLB) of $({a, b})$ is denoted by $a \wedge b$ and call its as meet of *a* and *b*.

Example: Let S be a set and $L = P(S)$. ⊆, containment is a partial order on L. Then $a \vee b$ is the set $A \cup B$ and $a \wedge b$ is the set $A \cap B$.

Theorem 5.1 $(P(S), \subseteq)$ *is a Lattice*

Proof: We know that \subseteq is a poset on $P(S)$. Then $X \subseteq T, Y \subseteq T$ means $X \cup Y \subseteq T$; and $X \subseteq T, Y \subseteq T$ means $T \subseteq X \cap Y$ So $X \cap Y$ is the infimum and $X \cup Y$ is the supremum of $\{X, Y\}$. Hence $(P(S), \subseteq)$ is a Lattice.

5.1.1 Sublattices

Definition 5.2 *Let* (L, \leq) *be a lattice. A nonempty subset* S *of* L *is called a sublattice of* L *if* $a \vee b \in S$ *and* $a \wedge b \in S$ *whenever* $a \in S$ *and* $b \in S$

5.1.2 Complete lattices

Definition 5.3 *A poset* (L, \leq) *is called a complete lattice if every subset* M *of* L has a least upper bound (supremum) *and a greatest lower bound (infimum) in* (L, \leq) *.*

5.1.3 Bounded Lattices

Definition 5.4 *A lattice* L *is said to be bounded if it has a greatest element* I *and a least element* O

For example the lattice Z^+ under partial order of divisibility is not a bounded lattice since it has no greatest element. The lattice $P(S)$ of all subsets of a set S, is bounded. Its greatest element is S and its least element is ϕ .

5.1.4 Complemented Lattices

Definition 5.5 *Let* L *be a bounded lattice with greatest element* I *and least element* O *, and let* $a \in L$ *. An element* $a' \in L$ is called a *complement* of a if

$$
a \vee a' = I \ and \ a \wedge a' = O
$$

Observe that

$$
O'=I\ and\ I'=O
$$

In general an element may have more than one complement.

Definition 5.6 *A complemented lattice is a bounded lattice in which every element* a *has a complement.*

Figure 5.1: Complemented Lattice

The figure represents a complemented lattice since every element a has a complement

5.1.5 Distributive Lattices

Definition 5.7 *A lattice* L *is called distributive if for any elements* a, b *and* c *in* L *we have the following distributive properties*

- *1.* $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$
- 2. $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$

5.1.6 Lattice Homomorphisms

Definition 5.8 *Let* L *and* M *be lattices. A map* φ *from* L *to* M *is called a lattice homomorphism if* φ *respects meet and join. That is, for* $a, b \in L$

- *1.* $\phi(a \wedge b) = \phi(a) \wedge \phi(b)$
- 2. $\phi(a \vee b) = \phi(a) \vee \phi(b)$

5.2 Boolean algebra

Definition 5.9 Let L and K be lattices, and let $\phi : L \to K$. A lattice isomorphism is a one-to-one and onto lattice *homomorphism.*

If the Hasse daigram of the lattice corresponding to a set with n elements is labeled by sequences of 0's and 1's of length *n*; then the resulting lattice is named B_n

Definition 5.10 *A finite lattice is called a Boolean algebra if its is isomorphic with* B_n *for some nonnegative integer* n*.*

5.2.1 Subalgebra

Definition 5.11 *Let* A *be a Boolean algebra and* B *a non-empty subset of* A*. Consider the following conditions*

- *1. if* $a \in B$ *, then* $a' \in B$
- *2. if* $a, b \in B$ *, then* $(a \vee b) \in B$
- *3. if* $a, b \in B$ *, then* $(a \wedge b) \in B$

A non-empty subset B *of a Boolean algebra* A *satisfying conditions 1 and 2 (or equivalently 1 and 3) is called a Boolean subalgebra of* A*.*

5.2.2 Direct product

Direct product of an algebraic object is given by the Cartesian product of its elements, considered as sets.

Definition 5.12 Let $(B_1, \vee_1, \wedge_1, ', O_1, I_1)$ and $(B_2, \vee_2, \wedge_2, ', O_2, I_2)$ be two boolean algebras. The direct product of *the two boolean algebras is defined to be a boolean algebra that is given by* $(B_1 X B_2, \vee_3, \wedge_3,''', O_3, I_3)$ *in which the operations are defined for any* (a_1, b_1) *and* $(a_2, b_2) \in B_1 X B_2$ *as*

- *1.* $(a_1, b_1) \vee_3 (a_2, b_2) = (a_1 \vee_1 a_2, b_1 \vee_2 b_2)$
- 2. $(a_1, b_1) \wedge_3 (a_2, b_2) = (a_1 \wedge_1 a_2, b_1 \wedge_2 b_2)$
- 3. $(a_1, b_1)''' = (a'_1, b''_1)$
- *4.* $O_3 = (O_1, O_2)$ *and* $I_3 = (I_1, I_2)$

5.2.3 Homomorphisms

Definition 5.13 Let $(B_1, \vee_1, \wedge_1, ', O_1, I_1)$ and $(B_2, \vee_2, \wedge_2, ', O_2, I_2)$ be two boolean algebras. A mapping $f : B_1 \to$ B_2 *is called a Boolean homomorphism if all the operations of the Boolean algebra are preserved; i.e., for any* $a, b \in B$

- *1.* $f(a \vee_1 b) = f(a) \vee_2 f(b)$
- 2. $f(a \wedge_1 b) = f(a) \wedge_2 f(b)$
- 3. $f(a') = f(a)''$
- 4. $f(O_1) = O_2$
- 5. $f(I_1) = I_2$