CS201: DISCRETE COMPUTATIONAL STRUCTURES

Module IV

Syllabus: *Lattices and Boolean Algebra*: *Lattices - Sublattices - Complete lattices - Bounded Lattices - Complemented Lattices - Distributive Lattices - Lattice Homomorphisms.*

Boolean algebra - sub algebra, direct product and homomorphisms

Disclaimer: These may be distributed outside this class only with the permission of the Instructor.

Federal Institute of Science And Technology (FISAT)

Contents

1 Lattices	1
5.1.1 Sublattices	2
5.1.2 Complete lattices	2
5.1.3 Bounded Lattices	2
5.1.4 Complemented Lattices	2
5.1.5 Distributive Lattices	3
5.1.6 Lattice Homomorphisms	3
.2 Boolean algebra	3
5.2.1 Subalgebra	3
5.2.2 Direct product	4
5.2.3 Homomorphisms	4

5.1 Lattices

Definition 5.1 A *lattice* is a poset (L, \leq) in which every subset $\{a, b\}$ consisting of two elements has a least upper bound and a greatest lower bound.

Least Upper Bound (LUB) of $(\{a, b\})$ is denoted by $a \lor b$ and call its as join of a and b. Greatest Lower Bound (GLB) of $(\{a, b\})$ is denoted by $a \land b$ and call its as meet of a and b.

Example: Let *S* be a set and L = P(S). \subseteq , containment is a partial order on *L*. Then $a \lor b$ is the set $A \cup B$ and $a \land b$ is the set $A \cap B$.

Theorem 5.1 $(P(S), \subseteq)$ is a Lattice

Proof: We know that \subseteq is a poset on P(S). Then $X \subseteq T, Y \subseteq T$ means $X \cup Y \subseteq T$; and $X \subseteq T, Y \subseteq T$ means $T \subseteq X \cap Y$ So $X \cap Y$ is the infimum and $X \cup Y$ is the supremum of $\{X, Y\}$. Hence $(P(S), \subseteq)$ is a Lattice.

5.1.1 Sublattices

Definition 5.2 Let (L, \leq) be a lattice. A nonempty subset S of L is called a sublattice of L if $a \lor b \in S$ and $a \land b \in S$ whenever $a \in S$ and $b \in S$

5.1.2 Complete lattices

Definition 5.3 A poset (L, \leq) is called a complete lattice if every subset M of L has a least upper bound (supremum) and a greatest lower bound (infimum) in (L, \leq) .

5.1.3 Bounded Lattices

Definition 5.4 A lattice L is said to be bounded if it has a greatest element I and a least element O

For example the lattice Z^+ under partial order of divisibility is not a bounded lattice since it has no greatest element. The lattice P(S) of all subsets of a set S, is bounded. Its greatest element is S and its least element is ϕ .

5.1.4 Complemented Lattices

Definition 5.5 Let L be a bounded lattice with greatest element I and least element O, and let $a \in L$. An element $a' \in L$ is called a **complement** of a if

$$a \lor a' = I \text{ and } a \land a' = C$$

Observe that

$$O' = I and I' = O$$

In general an element may have more than one complement.

Definition 5.6 A complemented lattice is a bounded lattice in which every element a has a complement.

Figure 5.1: Complemented Lattice

The figure represents a complemented lattice since every element a has a complement

Element	Complement
Ι	0
А	С
В	С
С	{B,A}
0	Ι

5.1.5 Distributive Lattices

Definition 5.7 A lattice L is called distributive if for any elements a, b and c in L we have the following distributive properties

- 1. $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$
- 2. $a \lor (b \land c) = (a \lor b) \land (a \lor c)$

5.1.6 Lattice Homomorphisms

Definition 5.8 Let L and M be lattices. A map ϕ from L to M is called a lattice homomorphism if ϕ respects meet and join. That is, for $a, b \in L$

- 1. $\phi(a \wedge b) = \phi(a) \wedge \phi(b)$
- 2. $\phi(a \lor b) = \phi(a) \lor \phi(b)$

5.2 Boolean algebra

Definition 5.9 Let L and K be lattices, and let $\phi : L \to K$. A lattice isomorphism is a one-to-one and onto lattice homomorphism.

If the Hasse daigram of the lattice corresponding to a set with n elements is labeled by sequences of 0's and 1's of length n; then the resulting lattice is named B_n

Definition 5.10 A finite lattice is called a Boolean algebra if its is isomorphic with B_n for some nonnegative integer n.

5.2.1 Subalgebra

Definition 5.11 Let A be a Boolean algebra and B a non-empty subset of A. Consider the following conditions

- 1. *if* $a \in B$, then $a' \in B$
- 2. *if* $a, b \in B$, *then* $(a \lor b) \in B$
- *3. if* $a, b \in B$ *, then* $(a \land b) \in B$

A non-empty subset B of a Boolean algebra A satisfying conditions 1 and 2 (or equivalently 1 and 3) is called a Boolean subalgebra of A.

5.2.2 Direct product

Direct product of an algebraic object is given by the Cartesian product of its elements, considered as sets.

Definition 5.12 Let $(B_1, \vee_1, \wedge_1, ', O_1, I_1)$ and $(B_2, \vee_2, \wedge_2, '', O_2, I_2)$ be two boolean algebras. The direct product of the two boolean algebras is defined to be a boolean algebra that is given by $(B_1XB_2, \vee_3, \wedge_3, ''', O_3, I_3)$ in which the operations are defined for any (a_1, b_1) and $(a_2, b_2) \in B_1XB_2$ as

- *I*. $(a_1, b_1) \vee_3 (a_2, b_2) = (a_1 \vee_1 a_2, b_1 \vee_2 b_2)$
- 2. $(a_1, b_1) \wedge_3 (a_2, b_2) = (a_1 \wedge_1 a_2, b_1 \wedge_2 b_2)$
- 3. $(a_1, b_1)''' = (a'_1, b''_1)$
- 4. $O_3 = (O_1, O_2)$ and $I_3 = (I_1, I_2)$

5.2.3 Homomorphisms

Definition 5.13 Let $(B_1, \vee_1, \wedge_1, ', O_1, I_1)$ and $(B_2, \vee_2, \wedge_2, '', O_2, I_2)$ be two boolean algebras. A mapping $f : B_1 \rightarrow B_2$ is called a Boolean homomorphism if all the operations of the Boolean algebra are preserved; i.e., for any $a, b \in B$

- 1. $f(a \vee_1 b) = f(a) \vee_2 f(b)$
- 2. $f(a \wedge_1 b) = f(a) \wedge_2 f(b)$
- 3. f(a') = f(a)''
- 4. $f(O_1) = O_2$
- 5. $f(I_1) = I_2$