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Process-to-Process Delivery:
UDP, TCP, and SCTP
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The transport layer is responsible for process-to-
process delivery—the delivery of a packet, part of a
message, from one process to another. Two processes
communicate in a client/server relationship, as we will
see later.

Topics discussed in this sect

Client/Server Paradigm

Multiplexing and Demultiplexing

Connectionless Versus Connection-Oriented Service
Reliable Versus Unreliable

Three Protocols
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‘ Note I

The transport layer Is responsible for
process-to-process delivery.
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Figure 23.1 Types of data deliveries
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Figure 23.2 Port numbers
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Figure 23.3 IP addresses versus port numbers
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Figure 23.4 IANA ranges
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Figure 23.5 Socket address
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Figu re 23.6 Multiplexing and demultiplexing

Processes Processes

v v v v 4+ % t 4
\

\ Multiplexer / / Demultiplexer

Y 1

e [

23.9



Figure 23.7 Error control
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Figure 23.8 Position of UDP, TCP, and SCTP in TCP/IP suite
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The User Datagram Protocol (UDP) is called a
connectionless, unreliable transport protocol. It does
not add anything to the services of IP except to provide

process-to-process communication instead of host-to-
host communication.
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Well-Known Ports for UDP
User Datagram

Checksum

UDP Operation

Use of UDP
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Table 23.1 Well-known ports used with UDP

Port Protocol Description
7 | Echo Echoes a received datagram back to the sender
9 Discard Discards any datagram that is received
11 Users Active users
13 Daytime Returns the date and the time
17 Quote Returns a quote of the day
19 Chargen Returns a string of characters
53 Nameserver Domain Name Service
67 BOOTPs Server port to download bootstrap information
68 | BOOTPc Client port to download bootstrap information
69 | TFTP Trivial File Transfer Protocol
111 RPC Remote Procedure Call
123 NTP Network Time Protocol
161 SNMP Simple Network Management Protocol
162 [ SNMP Simple Network Management Protocol (trap)




i Example 23.1

In UNIX, the well-known ports are stored in a file called
/etc/services. Each line in this file gives the name of the
server and the well-known port number. We can use the
grep utility to extract the line corresponding to the desired
application. The following shows the port for FTP. Note
that FTP can use port 21 with either UDP or TCP.

$grep ftp /etc/services

ftp 21/tcp
ftp 21/udp
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i Example 23.1 (continued)

SNMP uses two port numbers (161 and 162), each for a
different purpose, as we will see in Chapter 28.

$ grep snmp /etc/services
snmp 161/tcp #Simple Net Mgmt Proto

snmp 161/udp #Simple Net Mgmt Proto
snmptrap 162/udp #Traps for SNMP
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Figure 23.9 User datagram format
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| Notel
UDP length

= |IP length — IP header’s length
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Figure 23.10 Pseudoheader for checksum calculation
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i Example 23.2

Figure 23.11 shows the checksum calculation for a very
small user datagram with only 7 bytes of data. Because
the number of bytes of data is odd, padding is added for
checksum calculation. The pseudoheader as well as the
padding will be dropped when the user datagram is
delivered to IP.
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Figure 23.11 Checksum calculation of a simple UDP user datagram
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Figure 23.12 Queues in UDP
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TCP is a connection-oriented protocol; it creates a
virtual connection between two TCPs to send data. In
addition, TCP uses flow and error control mechanisms
at the transport level.

Topics discussed in this section:

TCP Services

TCP Features
Segment

A TCP Connection
Flow Control
Error Control
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Table 23.2 Weli-known ports used by TCP

Port Protocol Description
7 | Echo Echoes a received datagram back to the sender
9 | Discard Discards any datagram that is received
11 | Users Active users
13 | Daytime Returns the date and the time
17 | Quote Returns a quote of the day
19 | Chargen Returns a string of characters
20 | FTP, Data File Transfer Protocol (data connection)
21 | FTP. Control | File Transfer Protocol (control connection)
23 | TELNET Terminal Network
25 | SMTP Simple Mail Transfer Protocol
53 | DNS Domain Name Server
67 | BOOTP Bootstrap Protocol
79 | Finger Finger
80 | HTTP Hypertext Transter Protocol
111 | RPC Remote Procedure Call
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Figure 23.13 Stream delivery
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Figure 23.14 Sending and receiving buffers
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Figure 23.15 TCP segments

Sending Receiving
process process
TCP TCP
Next byte Next byte
to accept to deliver

Segment N Segment 1

e Next byte

to receive

Next byte
to be sent

23.26



1

‘ Note I

The bytes of data being transferred In

each connection are numbered by TCP.

The numbering starts with a randomly
generated number.
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Example 23.3

The following shows the sequence number for each
segment:

Segment 1 Sequence Number: 10,001 (range: 10,001 to 11,000)
Segment 2 Sequence Number: 11,001 (range: 11,001 to 12,000)
Segment 3 Sequence Number: 12,001 (range: 12,001 to 13,000)

Segment 4 Sequence Number: 13,001 (range: 13,001 to 14,000)
Segment S Sequence Number: 14,001 (range: 14,001 to 15,000)
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‘ Note I

The value in the sequence number field
of a segment defines the
number of the first data byte
contained in that segment.
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‘ Note I

The value of the acknowledgment field
In a segment defines
the number of the next byte a party
expects to receive.
The acknowledgment number is
cumulative.
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Figure 23.16 TCP segment format
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Figure 23.17 Control field

URG: Urgent pointer is valid RST: Reset the connection
ACK: Acknowledgment is valid SYN: Synchronize sequence numbers
PSH: Request for push FIN: Terminate the connection
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Table 23.3 Description of flags in the control field

Flag Description

URG | The value of the urgent pointer field is valid.

ACK | The value of the acknowledgment field is valid.
PSH | Push the data.

RST | Reset the connection.

SYN | Synchronize sequence numbers during connection.
FIN Terminate the connection.




Figu re 23.18 Connection establishment using three-way handshaking
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‘ Note I

A SYN segment cannot carry data, but it
consumes one sequence number.
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‘ Note I

A SYN + ACK segment cannot
carry data, but does consume one
sequence number.
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Note

|: o

An ACK segment, Iif carrying no data,
consumes no sequence number.
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Figure 23.19 Data transfer
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Figu re 23.20 Connection termination using three-way handshaking
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‘ Note I

The FIN segment consumes one
sequence number If it does
not carry data.
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‘ Note I

The FIN + ACK segment consumes
one sequence number If it
does not carry data.
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Figure 23.21 Half-close
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Figure 23.22 Sliding window
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T
[ore)

A sliding window Is used to make
transmission more efficient as well as
to control the flow of data so that the

destination does not become
overwhelmed with data.
CP sliding windows are byte-oriented.
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i Example 23.4

What is the value of the receiver window (rwnd) for host
A if the receiver, host B, has a buffer size of 5000 bytes
and 1000 bytes of received and unprocessed data?

Solution
The value of rwnd = 5000 — 1000 = 4000. Host B can

receive only 4000 bytes of data before overflowing its
buffer. Host B advertises this value in its next segment to

A.
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i Example 23.5

What is the size of the window for host A if the value of
rwnd is 3000 bytes and the value of cwnd is 3500 bytes?

Solution

The size of the window is the smaller of rwnd and cwnd,
which is 3000 bytes.
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i Example 25.6

Figure 23.23 shows an unrealistic example of a sliding
window. The sender has sent bytes up to 202. We assume
that cwnd is 20 (in reality this value is thousands of
bytes). The receiver has sent an acknowledgment number
of 200 with an rwnd of 9 bytes (in reality this value is
thousands of bytes). The size of the sender window is the
minimum of rwnd and cwnd, or 9 bytes. Bytes 200 to 202
are sent, but not acknowledged. Bytes 203 to 208 can be
sent without worrying about acknowledgment. Bytes 209
and above cannot be sent.
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Figure 23.23 Example 23.6
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Some points about TCP sliding windows:

J The size of the window is the lesser of rwnd and
cwnd.

. The source does not have to send a full window’s
worth of data.

. The window can be opened or closed by the
receiver, but should not be shrunk.

. The destination can send an acknowledgment at
any time as long as it does not result in a shrinking
window.

. The receiver can temporarily shut down the
window; the sender, however, can always send a
segment of 1 byte after the window is shut down.
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Note

|: |

ACK segments do not consume
sequence numbers and are not
acknowledged.
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‘ Note I

In modern implementations, a
retransmission occurs If the
retransmission timer expires or three
duplicate ACK segments have arrived.
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| Note I

NoO retransmission timer iIs set for an
ACK segment.
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‘ Note I

Data may arrive out of order and be
temporarily stored by the receiving TCP,
but TCP guarantees that no out-of-order

segment is delivered to the process.
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Figure 23.24 Normal operation
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Figure 23.25 Lost segment
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‘ Note I

The receiver TCP delivers only ordered
data to the process.
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Figure 23.26 Fast retransmission
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Stream Control Transmission Protocol (SCTP) is a
new reliable, message-oriented transport layer
protocol. SCTP, however, is mostly designed for
Internet applications that have recently been
introduced. These new applications need a more
sophisticated service than TCP can provide.

Topics discussed in this section:

SCTP Services and Features
Packet Format

An SCTP Association

Flow Control and Error Control
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‘ Note I

SCTP is a message-oriented, reliable
protocol that combines the best features
of UDP and TCP.
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Table 23.4 Some SCTP applications

Protocol Port Number Description
IUA 9990 ISDN over IP
M2UA 2904 SS7 telephony signaling
M3UA 2905 SS7 telephony signaling
H.248 2945 Media gateway control
H.323 1718, 1719, 1720, 11720 [P telephony
SIP 5060 IP telephony
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Figure 23.27 Multiple-stream concept
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Note

|: -

An associlation in SCTP can involve
multiple streams.
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Figure 23.28 Multihoming concept
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‘ Note I

SCTP association allows multiple IP
addresses for each end.
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| Note I

In SCTP, a data chunk 1Is numbered
using a TSN.
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‘ Note I

To distinguish between different
streams, SCTP uses an Sl.

23.66



¥

‘ Note I

To distinguish between different data
chunks belonging to the same stream,
SCTP uses SSNs.
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‘ Note I

TCP has segments; SCTP has packets.
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Figure 23.29 Comparison between a TCP segment and an SCTP packet
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‘ Note I

In SCTP, control information and data
Information are carried in separate
chunks.
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Figure 23.30 Packet, data chunks, and streams
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v

‘ Note I

Data chunks are identified by three
items: TSN, Sl, and SSN.
TSN Is a cumulative number identifying
the association; Sl defines the stream;
SSN defines the chunk in a stream.
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‘ Note I

In SCTP, acknowledgment numbers are
used to acknowledge only data chunks;
control chunks are acknowledged by
other control chunks if necessary.
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Figure 23.31 SCTP packet format
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‘ Note I

In an SCTP packet, control chunks come
before data chunks.
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Figure 23.32 General header
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Table 23.5 Chunks
Iype Chunk Description
0 DATA User data
1 INIT Sets up an association
2 INIT ACK Acknowledges INIT chunk
3 SACK Selective acknowledgment
4 HEARTBEAT Probes the peer for liveliness
5 HEARTBEAT ACK Acknowledges HEARTBEAT chunk
6 ABORT Aborts an association
7 SHUTDOWN Terminates an association
3 SHUTDOWN ACK Acknowledges SHUTDOWN chunk
9 ERROR Reports errors without shutting down
10 COOKIE ECHO Third packet in association establishment
11 COOKIE ACK Acknowledges COOKIE ECHO chunk
14 SHUTDOWN COMPLETE | Third packet in association termination
192 FORWARD TSN For adjusting cumulative TSN
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Note

|: -

A connection in SCTP iIs called an
associlation.
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‘ Note I

No other chunk is allowed in a packet
carrying an INIT or INIT ACK chunk.

A COOKIE ECHO or a COOKIE ACK
chunk can carry data chunks.
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Figure 23.33 Four-way handshaking
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B

‘ Note I

In SCTP, only DATA chunks

consume TSNs;

DA

23.81

A chunks are the only chunks
that are acknowledged.



Figure 23.34 Simple data transfer
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‘ Note I

The acknowledgment in SCTP defines
the cumulative TSN, the TSN of the last
data chunk received in order.
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Figure 23.35 Association termination
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Figure 23.36 Flow control, receiver site
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Figure 23.37 Flow control, sender site
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Figure 23.38 Flow control scenario
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Figure 23.39 Error control, receiver site
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Figure 23.40 Error control, sender site
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