T ¢ » Data Communications
.L | dt and NEtwnrking R Forouzan

Chapter 23

Process-to-Process Delivery:
UDP, TCP, and SCTP

23 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The transport layer is responsible for process-to-
process delivery—the delivery of a packet, part of a
message, from one process to another. Two processes
communicate in a client/server relationship, as we will
see later.

Topics discussed in this sect

Client/Server Paradigm

Multiplexing and Demultiplexing

Connectionless Versus Connection-Oriented Service
Reliable Versus Unreliable

Three Protocols

23.2

T

‘ Note I

The transport layer Is responsible for
process-to-process delivery.

23.3

Figure 23.1 Types of data deliveries

Processes Processes

Node to node: Data link layer
ces Host to host: Network layer ces
Process to process: Transport layer

| |
| |
| | | | | |
/ | Nodeto | Node to | | | |
J" ' node | node | Node to node | I !
| ah ah an > > \
! I Host to host & \
I = > \
/ Process to process \

23.4

Figure 23.2 Port numbers

Daytime Daytime
client server
H 52,000 —] — 13 H
A Transport layer Transport layer A

Data | 13 |52,000 s>
<= 13 (52000 Data

23.5

Figure 23.3 IP addresses versus port numbers

23.6

IP header

Transport layer
header

193.14.26.7

IP address
selects the host

13

Figure 23.4 IANA ranges

Registered

0 1023 ‘
|

49,152
| |

65,535
|

| |
| | |
t 1024

Well known

23.7

I
49,151

i

Dynamic

Figure 23.5 Socket address

IP address| 200.23.56.8 69 Port number

Socket address| 200.23.56.8 69 I

23.8

Figu re 23.6 Multiplexing and demultiplexing

Processes Processes

v v v v 4+ % t 4
\

\ Multiplexer / / Demultiplexer

Y 1

e [

23.9

Figure 23.7 Error control

Error is checked in these paths by the data link layer
Error is not checked in these paths by the data link layer

Transport
Network

Transport
Network

Data link [|

Physical I
]

Data link
Physical

23.10

Figure 23.8 Position of UDP, TCP, and SCTP in TCP/IP suite

Application
layer

Transport
layer

Network
layer

Data link
layer

Physical
layer

23.11

SMTP FTP TFTP DNS SNMP
SCTP TCP
IGMP ICMP
IP

ARP

Underlying LAN or WAN

technology

The User Datagram Protocol (UDP) is called a
connectionless, unreliable transport protocol. It does
not add anything to the services of IP except to provide

process-to-process communication instead of host-to-
host communication.

Tonire diccriccod 1m thic cortr
‘UPUVU (Y2 20 A 4 7 20 0 A 4 7 22N 7 N 28 7 N 4 7% BN) ¥ &

Well-Known Ports for UDP
User Datagram

Checksum

UDP Operation

Use of UDP

23.12

23.13

Table 23.1 Well-known ports used with UDP

Port Protocol Description
7 | Echo Echoes a received datagram back to the sender
9 Discard Discards any datagram that is received
11 Users Active users
13 Daytime Returns the date and the time
17 Quote Returns a quote of the day
19 Chargen Returns a string of characters
53 Nameserver Domain Name Service
67 BOOTPs Server port to download bootstrap information
68 | BOOTPc Client port to download bootstrap information
69 | TFTP Trivial File Transfer Protocol
111 RPC Remote Procedure Call
123 NTP Network Time Protocol
161 SNMP Simple Network Management Protocol
162 [SNMP Simple Network Management Protocol (trap)

i Example 23.1

In UNIX, the well-known ports are stored in a file called
/etc/services. Each line in this file gives the name of the
server and the well-known port number. We can use the
grep utility to extract the line corresponding to the desired
application. The following shows the port for FTP. Note
that FTP can use port 21 with either UDP or TCP.

$grep ftp /etc/services

ftp 21/tcp
ftp 21/udp

23.14

i Example 23.1 (continued)

SNMP uses two port numbers (161 and 162), each for a
different purpose, as we will see in Chapter 28.

$ grep snmp /etc/services
snmp 161/tcp #Simple Net Mgmt Proto

snmp 161/udp #Simple Net Mgmt Proto
snmptrap 162/udp #Traps for SNMP

23.15

Figure 23.9 User datagram format

8 bytes

I_- -
I_‘ F

H Header Data

Source port number Destination port number
16 bits 16 bits
Total length Checksum
16 bits 16 bits

23.16

T

| Notel
UDP length

= |IP length — IP header’s length

23.17

Figure 23.10 Pseudoheader for checksum calculation

23.18

Pseudoheader

Header

32-bit source IP address

32-bit destination IP address

All Os

8-bit protocol

(17) 16-bit UDP total length

Source port address

16 bits

Destination port address
16 bits

UDP total length

16 bits

Data

(Padding must be added to make the data a multiple of 16 bits)

i Example 23.2

Figure 23.11 shows the checksum calculation for a very
small user datagram with only 7 bytes of data. Because
the number of bytes of data is odd, padding is added for
checksum calculation. The pseudoheader as well as the
padding will be dropped when the user datagram is
delivered to IP.

23.19

Figure 23.11 Checksum calculation of a simple UDP user datagram

153.18.8.105
171.2.14.10
All Os 17 15
13
All Os
E S T
N G

10011001 00010010
00001000 01101001
10101011 00000010
00001110 00001010
00000000 00010001
00000000 00001111
000007100 00111111
00000000 00001101
00000000 00001111
00000000 00000000
01010700 01000101
01010011 01010100
01001001 01001110
010007111 00000000

—>
—_—
—>
EE—
e
EE—

100107110 11101011
01101001 00010100

_).,
H.

153.18
8.105

171.2

14.10

Oand 17

15

1087

13

15

0 (checksum)
TandE
SandT
land N

G and 0O (padding)

Sum
Checksum

23.20

Figure 23.12 Queues in UDP

Daytime Daytime
client server

- -

Incoming Outgoing , ‘ Incoming
queue queue queue

K

queue

Outgoing , ‘
UDP Port 52000 UDP ort 1

23.21

TCP is a connection-oriented protocol; it creates a
virtual connection between two TCPs to send data. In
addition, TCP uses flow and error control mechanisms
at the transport level.

Topics discussed in this section:

TCP Services

TCP Features
Segment

A TCP Connection
Flow Control
Error Control

23.22

Table 23.2 Weli-known ports used by TCP

Port Protocol Description
7 | Echo Echoes a received datagram back to the sender
9 | Discard Discards any datagram that is received
11 | Users Active users
13 | Daytime Returns the date and the time
17 | Quote Returns a quote of the day
19 | Chargen Returns a string of characters
20 | FTP, Data File Transfer Protocol (data connection)
21 | FTP. Control | File Transfer Protocol (control connection)
23 | TELNET Terminal Network
25 | SMTP Simple Mail Transfer Protocol
53 | DNS Domain Name Server
67 | BOOTP Bootstrap Protocol
79 | Finger Finger
80 | HTTP Hypertext Transter Protocol
111 | RPC Remote Procedure Call

23.23

Figure 23.13 Stream delivery

Sending
process

Receiving
process

TCP

23.24

TCP

Figure 23.14 Sending and receiving buffers

Sending Receiving
process process
TCP 1cP
Next byte Next byte
to write to read
(GRS
& O
! suter '
O LS
Not read ..-‘

Next byte ,e Stream of bytes Next byte
to send I 4 to receive

23.25

Figure 23.15 TCP segments

Sending Receiving
process process
TCP TCP
Next byte Next byte
to accept to deliver

Segment N Segment 1

e Next byte

to receive

Next byte
to be sent

23.26

1

‘ Note I

The bytes of data being transferred In

each connection are numbered by TCP.

The numbering starts with a randomly
generated number.

23.27

Example 23.3

The following shows the sequence number for each
segment:

Segment 1 Sequence Number: 10,001 (range: 10,001 to 11,000)
Segment 2 Sequence Number: 11,001 (range: 11,001 to 12,000)
Segment 3 Sequence Number: 12,001 (range: 12,001 to 13,000)

Segment 4 Sequence Number: 13,001 (range: 13,001 to 14,000)
Segment S Sequence Number: 14,001 (range: 14,001 to 15,000)

23.28

T

‘ Note I

The value in the sequence number field
of a segment defines the
number of the first data byte
contained in that segment.

23.29

v

‘ Note I

The value of the acknowledgment field
In a segment defines
the number of the next byte a party
expects to receive.
The acknowledgment number is
cumulative.

23.30

Figure 23.16 TCP segment format

H Header

Data

P

Source port address
16 bits

Destination port address

16 bits

32 bits

Sequence number

HLEN Reserved
4 bits 6 bits

Checksum
16 bits

32 bits

Acknowledgment number

Window size
16 bits

Urgent pointer
16 bits

23.31

Options and Padding

Figure 23.17 Control field

URG: Urgent pointer is valid RST: Reset the connection
ACK: Acknowledgment is valid SYN: Synchronize sequence numbers
PSH: Request for push FIN: Terminate the connection

23.32

23.33

Table 23.3 Description of flags in the control field

Flag Description

URG | The value of the urgent pointer field is valid.

ACK | The value of the acknowledgment field is valid.
PSH | Push the data.

RST | Reset the connection.

SYN | Synchronize sequence numbers during connection.
FIN Terminate the connection.

Figu re 23.18 Connection establishment using three-way handshaking

Active
open

A: ACK flag
S: SYN flag

Passive
open

Time

23.34

T

‘ Note I

A SYN segment cannot carry data, but it
consumes one sequence number.

23.35

¥

‘ Note I

A SYN + ACK segment cannot
carry data, but does consume one
sequence number.

23.36

Note

|: o

An ACK segment, Iif carrying no data,
consumes no sequence number.

23.37

Figure 23.19 Data transfer

Client

23.38

A: ACK flag
P: PSH flag

e

Data
bytes: 8001 -9000

S€qg: 9001
ack: 15007
— N ———
Data

bytes: 9001-10000

— AR o5

- ﬂ Data
bytes: 150011 7000

Figu re 23.20 Connection termination using three-way handshaking

Server
Client —
] | ——n
= = A: ACK flag —
S F: FIN ﬂag —
Active
close
Passive
close
ACK
Y Y
Time Time

23.39

¥

‘ Note I

The FIN segment consumes one
sequence number If it does
not carry data.

23.40

¥

‘ Note I

The FIN + ACK segment consumes
one sequence number If it
does not carry data.

23.41

Figure 23.21 Half-close

Clien

ACK

23.42

A: ACK flag
F: FIN flag

Active

close q_
— T

FIN

R —

4 Data segments from

ACK

server to client

Acknowled
gments from client
to servemmy.

e

- Q

FIN

Passive
close

Time

Figure 23.22 Sliding window

Window size = minimum (rwnd, cwnd)

Shrinking ~€e——m

cee m-|—1 cee
> Sliding window .
Closing Opening

23.43

T
[ore)

A sliding window Is used to make
transmission more efficient as well as
to control the flow of data so that the

destination does not become
overwhelmed with data.
CP sliding windows are byte-oriented.

23.44

i Example 23.4

What is the value of the receiver window (rwnd) for host
A if the receiver, host B, has a buffer size of 5000 bytes
and 1000 bytes of received and unprocessed data?

Solution
The value of rwnd = 5000 — 1000 = 4000. Host B can

receive only 4000 bytes of data before overflowing its
buffer. Host B advertises this value in its next segment to

A.

23.45

i Example 23.5

What is the size of the window for host A if the value of
rwnd is 3000 bytes and the value of cwnd is 3500 bytes?

Solution

The size of the window is the smaller of rwnd and cwnd,
which is 3000 bytes.

23.46

i Example 25.6

Figure 23.23 shows an unrealistic example of a sliding
window. The sender has sent bytes up to 202. We assume
that cwnd is 20 (in reality this value is thousands of
bytes). The receiver has sent an acknowledgment number
of 200 with an rwnd of 9 bytes (in reality this value is
thousands of bytes). The size of the sender window is the
minimum of rwnd and cwnd, or 9 bytes. Bytes 200 to 202
are sent, but not acknowledged. Bytes 203 to 208 can be
sent without worrying about acknowledgment. Bytes 209
and above cannot be sent.

23.47

Figure 23.23 Example 23.6

Window size = minimum (20,9) =9

A
Y

Sent, not
acknowledgedl Can be sent immediately
> N

_—) -
- -

<

+e+ 1991200 207 [208 |209| - -
Sentand) Can't be
acknowledged Next byte to be sent sent until window
opens

23.48

), VPR
‘ LVOL \

Some points about TCP sliding windows:

J The size of the window is the lesser of rwnd and
cwnd.

. The source does not have to send a full window’s
worth of data.

. The window can be opened or closed by the
receiver, but should not be shrunk.

. The destination can send an acknowledgment at
any time as long as it does not result in a shrinking
window.

. The receiver can temporarily shut down the
window; the sender, however, can always send a
segment of 1 byte after the window is shut down.

23.49

Note

|: |

ACK segments do not consume
sequence numbers and are not
acknowledged.

23.50

1

‘ Note I

In modern implementations, a
retransmission occurs If the
retransmission timer expires or three
duplicate ACK segments have arrived.

23.51

T

| Note I

NoO retransmission timer iIs set for an
ACK segment.

23.52

T

‘ Note I

Data may arrive out of order and be
temporarily stored by the receiving TCP,
but TCP guarantees that no out-of-order

segment is delivered to the process.

23.53

Figure 23.24 Normal operation

Server
E——
ol
—
Seq: 1201-1400
Ack: 4001 >
Seq: 4001 -5000
_ —= Ack: 1401
500 ms
— Ack: 5001 -*
Seq: 5001-6000
—= Ack: 1401
< 500 ms |: Seq: 6001-7000
Ack: 1401
Ack: 7001
Y Y
Time Time

23.54

Figure 23.25 Lost segment

Sender

Receiver

Receiver
Seq: 501-600 buffer
Acox [P -l
Seq: 601-700 .
Ack: x 4«- Ack: 701 -----
RTO s
L eq: 701-800
. ACk: X H LOSt Ga p
- Seq: 801-900 .
3 Ack: x Ack: 701
Q
£
~ Resent Out of order
e
901 [TTTT |
Y Y
Time Time

23.55

T

‘ Note I

The receiver TCP delivers only ordered
data to the process.

23.56

Figure 23.26 Fast retransmission

Receiver

_ Receiver
Seq: 101-200 buffer
Ack: x

Seq: 201-300
Ack: x

Ack: 301 [T]

-*
-*
Seq: 301-400
Ack: x ﬂ

Ack: 301

Ack: 701
Resent All in order

Y Y

Time Time

Seq: 401-500
Ack: x =) Ack: 301 -:.:
Seq: 501-600
: =
Ack: x Ack: 301 B BN
Seq: 601-700
Ack: x = -:-:]

23.57

Stream Control Transmission Protocol (SCTP) is a
new reliable, message-oriented transport layer
protocol. SCTP, however, is mostly designed for
Internet applications that have recently been
introduced. These new applications need a more
sophisticated service than TCP can provide.

Topics discussed in this section:

SCTP Services and Features
Packet Format

An SCTP Association

Flow Control and Error Control

23.58

¥

‘ Note I

SCTP is a message-oriented, reliable
protocol that combines the best features
of UDP and TCP.

23.59

Table 23.4 Some SCTP applications

Protocol Port Number Description
IUA 9990 ISDN over IP
M2UA 2904 SS7 telephony signaling
M3UA 2905 SS7 telephony signaling
H.248 2945 Media gateway control
H.323 1718, 1719, 1720, 11720 [P telephony
SIP 5060 IP telephony

23.60

Figure 23.27 Multiple-stream concept

Sending Receiving
process process
I [
SCTP J SCTP

23.61

Note

|: -

An associlation in SCTP can involve
multiple streams.

23.62

Figure 23.28 Multihoming concept

23.63

T

‘ Note I

SCTP association allows multiple IP
addresses for each end.

23.64

T

| Note I

In SCTP, a data chunk 1Is numbered
using a TSN.

23.65

T

‘ Note I

To distinguish between different
streams, SCTP uses an Sl.

23.66

¥

‘ Note I

To distinguish between different data
chunks belonging to the same stream,
SCTP uses SSNs.

23.67

|

‘ Note I

TCP has segments; SCTP has packets.

23.68

Figure 23.29 Comparison between a TCP segment and an SCTP packet

HL Window size

Checksum Urgent pointer

Options

Data Header and options

A segment in TCP

23.69

Source port address |Destination port address Source port address |Destination port address
Sequence number Verification tag
Acknowledgment number Checksum

A packet in SCTP

Control Header

Data

¥

‘ Note I

In SCTP, control information and data
Information are carried in separate
chunks.

23.70

Figure 23.30 Packet, data chunks, and streams

Fourth packet

Header

Control chunks

23.71

Stream 2

Third packet

Header

Control chunks

TSN:

Sl: 1

107

SSN: 2

e

Stream 1

Second packet

Header
Control chunks

TSN: 105
Sl: 1 SSN: 0
TSN: 106

Stream O |

First packet

Header

SI: 1 SSN: 1

y

Flow of packets from sender to receiver

Control chunks

v

‘ Note I

Data chunks are identified by three
items: TSN, Sl, and SSN.
TSN Is a cumulative number identifying
the association; Sl defines the stream;
SSN defines the chunk in a stream.

23.72

T

‘ Note I

In SCTP, acknowledgment numbers are
used to acknowledge only data chunks;
control chunks are acknowledged by
other control chunks if necessary.

23.73

Figure 23.31 SCTP packet format

General header
(12 bytes)

Chunk 1
(variable length)

L]

L]

Chunk N
(variable length)

23.74

T

‘ Note I

In an SCTP packet, control chunks come
before data chunks.

23.75

Figure 23.32 General header

23.76

Source port address
16 bits

Destination port address
16 bits

Verification tag
32 bits

Checksum
32 bits

Table 23.5 Chunks
Iype Chunk Description
0 DATA User data
1 INIT Sets up an association
2 INIT ACK Acknowledges INIT chunk
3 SACK Selective acknowledgment
4 HEARTBEAT Probes the peer for liveliness
5 HEARTBEAT ACK Acknowledges HEARTBEAT chunk
6 ABORT Aborts an association
7 SHUTDOWN Terminates an association
3 SHUTDOWN ACK Acknowledges SHUTDOWN chunk
9 ERROR Reports errors without shutting down
10 COOKIE ECHO Third packet in association establishment
11 COOKIE ACK Acknowledges COOKIE ECHO chunk
14 SHUTDOWN COMPLETE | Third packet in association termination
192 FORWARD TSN For adjusting cumulative TSN

23.77

Note

|: -

A connection in SCTP iIs called an
associlation.

23.78

1

‘ Note I

No other chunk is allowed in a packet
carrying an INIT or INIT ACK chunk.

A COOKIE ECHO or a COOKIE ACK
chunk can carry data chunks.

23.79

Figure 23.33 Four-way handshaking

Client

COOKIE ECHO -

- COOKIE ACK

Y
Time Tlme

23.80

B

‘ Note I

In SCTP, only DATA chunks

consume TSNs;

DA

23.81

A chunks are the only chunks
that are acknowledged.

Figure 23.34 Simple data transfer

23.82

Server
|
—
—
TSN: 7105
DATA chunk
TSN: 7106
DATA chunk
TSN: 7107
DATA chunk
TSN: 7108
DATA chunk
cumTSN: 7108
SACK chunk
TSN: 121
DATA chunk
TSN: 122
DATA chunk
cumTSN: 122
SACK chunk
Y Y
Time Time

B

‘ Note I

The acknowledgment in SCTP defines
the cumulative TSN, the TSN of the last
data chunk received in order.

23.83

Figure 23.35 Association termination

SHUTDOWN

Server

Active
close cum TSN

SHUTDOWN ACK

Passive
close

SHUTDOWN
COMPLETE
Y
Time

23.84

Time

Figure 23.36 Flow control, receiver site

winSize To process
| |
Received > 26([25([24([23(]|22
Receiving queue T
26 cumTSN

1000 winSize
20 lastACK

23.85

Figure 23.37 Flow control, sender site

From process

Outstanding chunks

.

42

41

40

39

38

37

36

35

30

29

29

29

29

Sending queue

23.86

—>» To send
37 curTSN
2000 rwnd
700 inTransit

Figure 23.38 Flow control scenario

1 curTSN

[4][3][2][1]|[2000] rwnd

0 inTransit DATA

TSN: 1 1000 bytes
2 curTSN
4113112||1][]| 2000 d
1000 irm'rr]ansit
DATA
TSN: 2 1000 bytes

3 curTSN

2000 rwnd

2000 | inTransit

Receiver

SACK

——«' ACK:2 rwnd: 0

3 curTSN
@ 0 rwnd
0 inTransit SACK
Process writes | = ACK: 2 rwnd: 2000
5and 6
Y .
Time

23.87

cumTSN
winSize
lastACK

cumTSN
winSize
lastACK

cumTSN
winSize
lastACK

cumTSN
winSize
lastACK

Time

2000

1000

2

2000

2

Process reads
1and 2

Figure 23.39 Error control, receiver site

To process

Receiving queue

Co [

Received »{34|(33(|32([31]" ' [28|[27|[26]' ' |[23[[22|[21
o L
|] T

5698 ‘ 23 cumTSN

31' 32 1000 |winSize
d 20 lastACK

Duplicate OutOfOrder

23.88

Figure 23.40 Error control, sender site

From process

Outstanding chunks

.

40

39

38

37

36

35

25

24

23

Sending queue

23.89

—>» To send

37 curTSN

Add when timer
expires or three

SACKs are received.

>

22

21

Retransmission

queue

2000 rwnd
1400 inTransit

—>» To send

