
    MODULE 2 
  INTRODUCTION TO AUTOMATA THEORY 
 
 An Automata is a construct that possess all the indispensable features of a 
computer.It accepts an input,produces output, may have some temporary storage and can 
make decisions in transforming the input into the output. 
 
Finite Automata: 
 It is a mathematical model of acomputer.A Finite Automata consists of a finite set 
of states and a set of transitions from state to state that occur on input symbols chosen 
from an alphabet ∑ 
The pictorial representation of FA consists of 
 a)Input tape – It is divided into number of cells with one symbol in each cell. 

Input is a string on alphabet set  ∑. 
 b)Finite Control –  
 c)Movable reading head 
  Initially the head is placed at the leftmost square of the tape and the finite 
control is set to an initial state.q0,q1,q2….. are the statesin the finite control systems.x,y,z 
are the input symbols.At regular intervals, the automata reads one symbol from the input 
and then enters in a new state that depends only and then enters in a new state that 
depends on the current state and current symbol.After reading an input symbol, reading 
head move one square to the right on the input tape, so that on the next move,it will read 
the symbol in the next tape square.This process is repeated again and again.The automata 
then indicates its acceptability of a string by the state it is at the end ie if it winds up in 
one of a set of final states,the input string is considered to be accepted.The language 
accepted by the machine is the set of strings it accepts. 
Notations for DFA 
 There are two preferred notations for describing automata. 
1.Transition diagram 
2.Transition table 
Transition table: 
 A transition table is a conventional table representation of a function like δ that 
takes 2 arguments and return states.The rows of the table corresponds to states and the 
columns corresponds to the input. 
 
Transition Diagram: 
 A directed graph called a transition diagram is associated with a FA. Here vertices 
of a graph corresponds to the states of the FA and the edges represents transitions.The FA 
accepts a string ‘x’ if the sequence of transitions corresponding to the symbols of ‘x’  
leads from start state to an accepting state.In transition graph, the initial state ‘q0’ is 
indicated by the arrow labeled ‘start’.The states are represented as circles and the final 
states are indicated by the double circles. 
For eg: 
 A transition diagram of a FA accepting all strings of 0’s and 1’s in which both the 
number of 0’s and 1’s are even. 



   
 
 
Deterministic Finite Automata(DFA) 

 A DFA is a FA which allows only one transition from a state on the same input 
symbol.A DFA is defined using 5 tuples M=(Q, Σ,  δ, q0, F) where 

  
Q – set of states 
Σ - i/p alphabet 
δ - Q x Σ  → Q 
q0 – initial state 
F – set of final states 

 
1.Construct a DFA accepts all strings consisting of arbitrary number of a’s followed by a 
single ‘b’.   
 
L={an b ;n>=0} 
 HereM=(Q, Σ,  δ, q0, F); where  Q={ q0,q1,q2 } ;  
Σ= {a,b }; F={ q1 } 
 
 
 

 
 
 



2. Construct a DFA accepts all strings defined on {0,1}, except those containing 
substring 001 

  
Nondeterministic Finite Automata: 

 Nondeterminism means a choice of moves for an automon.NFA has more than 
one possible moves for a single state  and the same input symbol. A NFA is defined 
by a 5 tuple M=(Q, Σ,  δ, q0, F) where 

  
Q – set of states 
Σ - i/p alphabet 
δ - Q x (∑ x {∈}) →  2Q 

q0 – initial state 
F – set of final states 

 
 
 

 
 
 
 

  



 
 

2. Design a NFA that accepts all strings defined on {0,1}, except those containing 
two consecutive zero’s or one’s  

 
 
 
Differences between DFA & NFA 

 For DFA, the outcome is a single state of Q whereas for NFA the outcome is a 
subset of Q 

 NFA can make a transition without consuming an input symbol ie ∈ transitions 
are possible. 

 
A string is accepted by a NFA if there is some sequence of possible 

 moves that will put the machine in a final state at the end of the string 
 

NFA with ∈  transitions 
 
∈- closure of a particular state is a set of all those states of automata which can be 

reached from that state on a path labeled by ‘∈’. 
Rules: 

 q0 is added to ∈- closure of q0 
 If q1 is in ∈- closure of q0 and there is an edge labeled ‘∈’ from q1 to q2, then q2 

is also added to ∈- closure of q0 if q2 is not already there. 
 If ‘T’ is a set of states then ∈- closure (T) is the union of  ∈- closure of single 

states. 
 
For the figure given below, check whether input ‘ab’ is accepted or not 

  
  



∈- closure (q0) = {q0, q1, q2}   

  δ*( q0, ∈)   =  ∈- closure (q0) = {q0, q1, q2}   

 

δ*( q0, a)   =  ∈- closure (δ(δ*( q0, ∈)), a) 
   = ∈- closure (δ({q0, q1, q2}), a) 
   = ∈- closure (δ( q0,a), δ( q1,a), δ( q2,a) ) 
   = ∈- closure ({q0}, φ, φ) 
   = ∈- closure ({q0}) 
   = {q0, q1, q2}   
 
δ*( q0, ab)   = ∈- closure (δ(δ*( q0, a)), b) 
   = ∈- closure (δ( q0,b), δ( q1,b), δ( q2,b) ) 
   = ∈- closure (φ, {q1}, φ) 
   = ∈- closure (q1) 
   = { q1, q2} 
 
q2 is the final state , hence ‘ab’ is accepted by the machine. 

 
Theorm 
 If there is a NFA which accepts a language ‘L’ then there exists a DFA that 
accepts the same language ‘L’ 
 Conversion of NFA to DFA 
 
 
 
Step 1:Find  all the states of NFA without ∈ -transitions including initial and final states 
           a)Initial state will be ∈- closure of the initial state of NFA with ∈- transitions 
           b)Final state of NFA without ∈- transitions are all those new states which 
             contains the final state of NFA with  ∈- transitions 
           c)Find the ∈- closure of rest of the states 
 
 



 
 
 
 
 
 



 
Minimization of DFA 
Step 1:Remove all inaccessible or unreachable states. 
Step 2:Draw the transition table for rest of the states 
Step 3:Now divide rows of transition table into 2 sets as: 
         a)One set contains only those rows which start from non-final states. 
         b)Other set contains only those rows which starts from final states. 
Step 4:Apply step 4 on both sides individually .Slip out the same states from the table, 
Step 5:Repeat the step 4 for set2 
Step 6: Combine set1 and set 2 .Now it is the transition table of minimized DFA 
 

 
 
 
 
Finite Automata with output 
 

Moore machine 
A finite state machine that produces an output for each state. Output depends on 

present state, it is independent of current input. It can be represented as 
M = (Q, Σ, ∆, δ, λ, q0) 
where  ∆ - output alphabet 

λ - mapping function from Q to ∆ 
 
 
 
Mealy Machine 

A mealy machine produces an output for each transition (state/input 
pair). . It can be represented as 
M = (Q, Σ, ∆, δ, λ, q0) 
where  ∆ - output alphabet 

λ - mapping function which maps Q and Σ  to ∆ 

 

 A moore machine can be transformed into an equivalent mealy machine 
by associating the output of each state with every transition that leads to that 
state.  The languages accepted are the same (although the mealy machine 
doesn't recognize E).  

To transform a mealy machine into a more machine, create a state for 
each state/output pair.  In this example there are two possible outputs, 0 and 1.  
If state q on A goes to r, producing 1 in the mealy machine, then q0 and q1 on A 
go to r1, and the state r1 produces the output 1.  Verify that this moore machine 
produces the same output as the original meally machine, for any given input 
string.  



 

 

Regular Expressions 
 

             Regular expressions are algebraic description or notations used to 
describe language accepted by the FA.The operations on languages are used as the 
operations on r.e 
1.Union 
2.Concatenation 
3.Star Closure 
4.+ve closure 

Regular expression involves a combination of strings of symbols from alphabet 
set Σ, parenthesis, the operators such as ‘+’,’*’ and ‘.’.Union is denoted by using ‘+’ 
operator and concatenation is denoted by using ‘.’operator 
 
The set of regular expression is defined by the following rules 

 Every letter of  Σ  can be made into a r.e 
 ‘∈’ is a regular expression 
 If ‘r1’ and ‘r2’ are regular expressions then  

1.(r1)  (2)r1.r2 (3)r1+r2  (4) r1* (5)r1+  are also r.e 
 A string is a r.e if and only if it can be derived from primitive r.e by a finite no: of 

applications of the rules in (2). 
 

Pumping lemma for regular expressions 
 Pumping lemma is based on Pigeon hole  principle. It  states that 

• If an infinite language is regular, it can be defined by a dfa.  
• The dfa has some finite number of states (say, n).  
• Since the language is infinite, some strings of the language must have length > n.  
• For a string of length > n accepted by the dfa, the walk through the dfa must 

contain a cycle.  
• Repeating the cycle an arbitrary number of times must yield another string 

accepted by the dfa.  

The pumping lemma for regular languages is a way of proving that a given (infinite) 
language is not regular. It can be briefed as below. 

• Assume the language L is regular.  
• By the pigeonhole principle, any sufficiently long string in L must repeat some 

state in the dfa; thus, the walk contains a cycle.  
• Show that repeating the cycle some number of times ("pumping" the cycle) 

yields a string that is not in L.  
• Conclude that L is not regular.  



If L is an infinite regular language, then there exists some positive integer m such 
that any string w L whose length is m or greater can be decomposed into three parts, 
xyz, where  

• |xy| is less than or equal to m,  
• |y| > 0,  
• wi = xyiz is also in L for all i = 0, 1, 2, 3, ....  

Applications of Finite Automata 

1.Lexical Analyzer 

 The tokens of programming language can be expressed as regular sets.A no: 
of lexical analyzer generators takes as input a sequence of regular expression describing 
the tokens and produce a single finite automata recognizing any token.This lexical 
analyzer may be used as a module in a compiler. 

2.Text Editors 

 Certain text editors and similar programs permit the substitution of a string for 
any string matching a given regular expression 

 

 
 
 
 

 
 


