B B4B0144

		Total Pages:3		
Reg No.: Name:				
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FOURTH SEMESTER B.TECH DEGREE EXAMINATION, JULY 2017		
		Course Code: ME202		
		Course Name: ADVANCED MECHANICS OF SOLIDS (ME)		
Ma	Max. Marks: 100 Duration: 3 Hours			
		(Data handbooks not permitted) PART A		
		Answer any three questions. Each question carries 10 marks.		
1	a)	What is meant by the state of stress at a point?	(3)	
	b)	The state of stress at a point is characterised by σ_x =18 σ_y = - 50, σ_z = 32 τ_{xy} = 0, τ_{xz} =	(7)	
		$24,\tau_{yz}=0$ (All stress values are in kPa); Calculate the principal stresses and the		
		direction of largest tensile principal stress?		
2	a)	Explain the plane stress and strain with ONE example each?	(4)	
	b)	A displacement field $u=2xyi+3zk$ where i and k are unit vectors along x and z	(6)	
		directions is acting at (1, 1, 0). Find the rectangular components of strain and obtain		
		the state of strain matrix?		
3	a)	Describe the Airy's stress function with the help of second degree polynomial?	(4)	
	b)	Obtain the bending stress on the cross section of a cantilever beam carrying point	(6)	
		load at the free end using polynomial stress function method?		
4	a)	Write the generalized Hook's law for an isotropic material.	(5)	
	b)	State and prove uniqueness theorem.	(5)	
		PART B Answer any three questions. Each question carries 10 marks		
		Answer any three questions. Each question carries 10 marks		
5	a)	Obtain the stress distribution in a rotating solid disc of radius 'b' with no external	(7)	
		forces at the outer surface.		
	b)	Sketch the circumferential stress distribution for a thick cylinder subjected to	(3)	
		internal pressure only.		
6	a)	Draw the stress distribution around a small hole (diameter 'b'), on a thin plate	(4)	

edges.

having large width ('a') where b<<a, subjected to uniform tensile forces at the two

B B4B0144

b) What are the assumptions involved in axisymmetric problems. Write the governing (6) equilibrium equations for the axisymmetric problem with sketch indicating stress components.

7 a) Find the value of load P in Fig.1, so that the maximum bending stress allowed is 15MPa for the case of beam shown below, subjected to unsymmetrical bending.

Fig.1

- b) What is meant by shear centre? (2)
- 8 a) Obtain the expression for strain energy in a bar subjected to:
 - i) axial force ii) bending moment iii) twisting moment
 - b) State and prove reciprocal relation in strain energy. (4)

PART C

Answer any four questions. Each question carries 10 marks.

- 9 a) Explain the principle of virtual work? (3)
 - b) State and prove Castiglianos's first theorem. (7)
- 10 a) Write the general expression for twisting moment for shafts of non-circular cross section incorporating warping function $\Psi(x,y)$.
 - b) What is meant by warping of non-circular shafts? Prove that St. Venants warping (7) function is harmonic?
- 11 a) Explain the minimum potential energy theorem? (2)
 - b) Find the support reaction R in Fig.2 at the end of the cantilever beam using strain (8) energy method. (Load acting is P at a distance of 'b' from the roller support).

B B4B0144

Fig.2

12 a) Discuss the Maxwell reciprocal theorem.

(2)

b) A shaft of square section as shown in Fig. 3 below is subjected to a twisting moment such that the maximum shear stress is limited to 250GN/mm² Obtain the torque and angular twist, if shaft is 1.6m long (Take G= 70000N/mm²).

Fig.3

- 13 a) Why closed sections are having better torsional rigidity than open sections, briefly (4) explain?
 - b) Find an expression for the maximum shear stress induced in an elliptical bar under (6) torsion?
- 14 a) A thin walled box section $2a \times a \times t$ is to be compared with a solid circular section having diameter 'a' shown below in Fig.4. Find the thickness 't' so that both sections have:
 - i) Same shear stress for same torque
 - ii) Same stiffness.

b) Define the term shear flow in a thin walled tube?

(2)
