C C7122

Total Pages: 2

Reg No.:	Name:
•	

		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017		
Course Code: ME203				
Course Name: MECHANICS OF FLUIDS (ME)				
Max. Marks: 100 Duration: 3 Hour			Hours	
PART A				
		Answer any three full questions, each carries 10 marks.	Marks	
1	a)	Differentiate between ideal fluids and real fluids. Mark those on rheological diagram.	(4)	
	b)	A plate weighing 150N and measuring 0.8mx0.8m slides down an inclined plane over an oil film of 1.2mm thickness for an inclination of 30° and a velocity of 0.2m/s. Compute the dynamic viscosity of the fluid.	(6)	
2	a)	What is metacentre? Explain the equilibrium conditions of floating bodies.	(4)	
	b)	A triangular plate of base width 2m and height 3m is immersed in water with its plane making an angle of 60° with the free surface of water. Determine the hydrostatic pressure force and the centre of pressure when the apex of the triangle lies 5m below the free water surface.	(6)	
3	a)	Explain the working principle and use of the following devices.	(6)	
		i) Hydraulic lift ii) Piezometer iii) Bourden tube pressure gauge		
	b)	Differentiate between rotational and irrotational fluid flow.	(4)	
4	a)	Define the following with example.	(4)	
		i) Stream lines ii) Stream tube iii) Path lines iv) Streak lines		
	b)	The stream function for a flow field is given by $\psi = 2xy$. Check whether the flow is	(6)	
continuous or irrotational. PART B				
Answer any three full questions, each carries 10marks.				
5	a)	Derive Euler's equation of motion. Obtain Bernouli's equation from Euler's	(6)	
		equation.	(-)	
	b)	What are the applications and limitations of Bernouli's equation?	(4)	
6	a)	What is Venturimeter? Derive an expression for discharge through a venturimeter.	(6)	
	b)	Water flows at the rate of 15litre/s through a pipe 100mm diameter orifice used in a	(4)	
		200 mm diameter pipe. What is the difference of pressure head between upstream section and vena contracta section? Take coefficient of contraction as 0.6 and coefficient of velocity as 1.	,	
7	a)	Differentiate between laminar and turbulent flows.	(4)	
	b)	Derive Darcy- Weisbach equation.	(6)	
8	a)	Explain the causes of major and minor energy losses in pipe flows.	(4)	

C C7122

- b) Glycerine flows at a velocity of 5m/s in a 10cm diameter pipe. Dynamic viscosity (6) and density of glycerine is assumed as 1.50Pa.s and 1260kg/m³ respectively. Estimate: i) The boundary shear stress in the pipe due to the flow.
 - ii) Head loss in a length of 10m of pipe.
 - iii) Power developed by the flow in a distance of 10m.

PART C

Answer any four full questions, each carries 10marks.

- Determine the displacement thickness, momentum thickness and energy thickness (10 in terms of normal boundary layer thickness δ in respect of the following velocity profile in the boundary layer on a flat plate $\frac{u}{v} = 2\left(\frac{y}{\delta}\right) \left(\frac{y}{\delta}\right)^2$ where u is the velocity at height y above plate surface and U is the free stream velocity.
- Obtain Von Karman momentum integral equation from conservation principles. (10)
- 11 a) Derive an expression for i) displacement thickness and ii) momentum thickness. (6)
 - b) A 2.5m ship model was tested in fresh water (ρ =1000kg/m³) and measurements (4) indicated that there was a resistance of 45N when the model was moved at 2m/s. Work out the velocity of 40m prototype. Also calculate the force required to drive the prototype at this speed through sea water (ρ =1025kg/m³).
- 12 a) Define the following: i) boundary layer thickness ii) displacement thickness (4) iii) momentum thickness and iv) energy thickness.
 - b) Explain: i)Geometric similarity ii)Kinematic similarity iii) Dynamic similarity. (6)
- Show that the power P developed in a water turbine can be expressed as: $P = \rho N^3 D^5 \Phi\left\{\frac{D}{B}, (\rho D^2 N)/\mu, \frac{H}{D}, ND/\sqrt{gH}\right\}$ where D and B are diameter and width of runner, N is the speed in rpm; H is the operating head, μ and ρ are respectively the coefficient of dynamic viscosity and mass density of the liquid.
- Define the following dimensionless number with their field of application:

 i) Froude Number ii) Weber Number iii) Newton number iv) Mach number