D D7148

Total Pages: 2

 Reg No.:_____
 Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY					
		THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017					
Course Code: ME205							
Course Name: THERMODYNAMICS (MA, ME, MP, AN)							
Max. Marks: 100 Duration: 3 Hours							
	PART A						
		Answer any three full questions, each carries 10 marks.	Marks				
1	a)	Define property of a system with any two examples. Why thermodynamic	(3)				
		properties are taken as coordinates in thermodynamics?					
	b)	Explain free expansion? Why the displacement work is absent in free expansion?	(4)				
	c)	List any 6 applications of thermodynamics.	(3)				
2	a)	What is PMM1? Why it is not possible?	(3)				
	b)	Define enthalpy. Prove that for ideal gas enthalpy is a function of temperature	(3)				
		alone.					
	c)	Explain the working of thermocouple with neat sketch.	(4)				
3	a)	A rigid tank of 2m ³ initially contains air at 100kPa and 25 ⁰ C. The tank is					
		connected to a supply line which contains air at 600kPa and 25°C through a					
		valve. The valve is opened and air is allowed to enter the tank until the pressure	(6)				
		in the tank reaches the line pressure at which the valve is closed and the					
		temperature of the air inside the tank at this instant measures 80°C. Determine (a)					
		the mass of air that has entered the tank and (b) the amount of heat transfer.					
	b)	What is total energy of a system? Prove that total energy is thermodynamic	(4)				
		property of a system.					
4	a)	Derive steady flow energy equation.	(5)				
	b)	In an adiabatic gas turbine, air expands at 1200kPa and 500°C to 100kPa and					
		150°C. Air enters the turbine with a velocity of 40m/s through an opening of area	(5)				
		0.2m ² and exhausts through a 1m ² opening. Determine (a) mass flow rate of air					
		through the turbine and (b) the power produced by the turbine.					
		PART B					
		Answer any three full questions, each carries 10 marks.					
5	a)	Give two statements of second law of thermodynamics and prove its equivalence	(5)				
	b)	State and explain principle of increase of entropy. Discuss its physical					
		significance.	(5)				
6	a)	State and prove Clausius inequality.	(6)				
	b)	What is meant by (i) exergy (ii) dead state (iii) availability	(4)				
7	a)	State and prove Carnot's theorem.	(5)				
	b)	Define dryness fraction. Draw the p-v-T surface of a substance that contracts on	(5)				
		freezing.					
8		Derive the expression for availability of flow process.	(10)				

D D7148

PART C

	Answer any four full questions, each carries 10 marks.
a)	What are reduced properties? State the law of corresponding states?

9	a)	What are reduced properties? State the law of corresponding states?	(4)
	b)	A 0.5m ³ rigid tank containing Hydrogen at 20 ^o C and 400kPa is connected by a	
		valve to another 0.5m ³ rigid tank that holds Hydrogen at 50 ⁰ C and 150kPa. Now	
		the valve is opened and the system is allowed to reach thermal equilibrium with	(6)
		the surroundings, which are at 15 ^o C. Determine the final pressure in the tank and	
		the amount heat transferred to the surrounding. Take γ =1.38	
10	a)	The volumetric analysis of mixture of gases is 30 percent Oxygen, 40 per cent	
		Carbon dioxide and 30 percent Nitrogen. The mixture is heated from 20°C to	(6)
		200°C while flowing through a pipe in which the pressure is maintained at	
		150kPa. Determine the heat transfer to the mixture per unit mass of the mixture.	
		Take C _p values of Oxygen, Carbondioxide and Nitrogen as 0.918, 0.846 and	
		1.039kJ/kg K.	
	b)	What is virial expansion? Explain the term compressibility factor.	(4)
11	a)	What is Kay's rule? Give its importance.	(4)
	b)	Explain law of partial pressures and Amagat's law of additive volumes for the	
		mixture of ideal gases.	(6)
12	a)	Comment on the physical significance of Clasius- clapeyron equation.	(4)
	b)	Define Gibbs and Helmholtz function. Give its significance on chemical reaction.	(6)
13	a)	What are Maxwell's equations? Also derive TDS equations.	(5)
	b)	Define Joule-Thomson coefficient. What is its significance? Determine its value	(5)
		for an ideal gas.	
14	a)	Define equivalence ration. What is its significance?	(4)
	b)	Explain (i) enthalpy of combustion and (ii) enthalpy of formation.	(6)
