APJ Abdul Kalam Technological University

First Semester M.Tech Degree Examination December 2017

Ernakulam II Cluster

05CS 6013 - DIGITAL IMAGE PROCESSING

Time: 3 hrs.

Max. Marks: 60

- I.
- a) Compute the histogram equalization of the below image where the maximum pixel intensity is 7 [6 Marks]

b)	Justify yes or no, whether two different images can have same histogram?	[3 Marks]
c)	Write the condition for m-adjacency of pixels.	[3 Marks]

II

	a)	Prove the Separability of the 2 Dimensional Discrete Fourier Transform.	[4 Marks]	
	b)	Write the algorithm for adaptive median filtering algorithm that works in two	stages.	
			[6 Marks]	
	c)	Discuss the behavior of contraharmonic filter for positive and negative values	ues of Q.	
			[2 Marks]	
III				
	a)	Compute the Haar transform of the 2*2 image	[6 Marks]	

 $\begin{bmatrix} 3 & -1 \\ 6 & 2 \end{bmatrix}$ b) Write the properties of Scaling functions and wavelet functions with the help of equations. [6 Marks]

Ε

c) Discuss in detail about Golomb coding with the help of an example. [6 Marks]

OR

IV

a) Construct a fully populated approximation pyramid and corresponding prediction residual pyramid for the image. Use 2*2 block neighborhood averaging for the approximation filter and assume the interpolation filter implements pixel replication.

$$f(x,y) = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}$$
[9 Marks]

b) Encode the message COMMITTEE using Huffman coding [9 Marks]

V

a)	Write the algorithm for basic global thresholding.	[7 Marks]
b)	Write the algorithm for region growing segmentation.	[7 Marks]
c)	Discuss in brief about Chain Codes.	[4 Marks]

OR

VI

a)	Write the method for the detection of edge in detail.	[9 Marks]
b)	Write the algorithm for region splitting and merging.	[9 Marks]