T-1	6878	
14.	PA. 18	
	UCAC	

(Pages: 3)

Reg. No	******
Name	

B.TECH. DEGREE EXAMINATION, NOVEMBER 2017

Third Semester

Branch: Computer Science and Engineering/Information Technology EN 010 301 B—ENGINEERING MATHEMATICS—II [CS, IT]

(New Scheme-2010 Admission onwards)

[Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

Each question carries 3 marks.

- 1. Define Tautology and contradictions?
- 2. What are the properties of a congruence relation?
- 3. Define Binary Relation, Give example for a binary relation?
- 4. Explain the properties of a lattice.
- 5. Define complete graph? Give an example.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each question carries 5 marks.

- 6. Construct the truth table for the following propositions?
 - (a) $p \vee \sim p$.
 - (b) $\sim (p \land \sim q)$.
- 7. S.T. that the numbers 25 and 37 are relatively prime using Euclidean algorithm.
- 8. Consider the 'subset' relation \subseteq on the set $P(\{1,2,3\})$, that is for all sets U and V in $P(\{1,2,3\})$ $U \subseteq V \Leftrightarrow \forall x$, if $x \in U$ then $x \in V$ construct a Hasse diagram for this relation.
- 9. Define Algebraic system? What are its general properties?
- 10. Define Tree? What are its properties?

 $(5 \times 5 = 25 \text{ marks})$

Turn over

Part C

Answer all questions. Each full question carries 12 marks.

- 11. (a) S.T. $\sim (p \vee (\sim p \wedge q))$ and $\sim p \wedge \sim q$ are logically equivalent?
 - (b) S.T. $(p \land q) \rightarrow (p \lor q)$ is a tautology.

 $(6 \times 2 = 12 \text{ marks})$

Or

- 12. (a) Define the terms: proposition, conjunction, disjunction and negation with examples.
 - (b) Define the laws of algebra of propositions?

 $(6 \times 2 = 12 \text{ marks})$

13. (a) Using Fermat's Theorem find 3¹² mod 11?

(3 marks)

(b) Using pigeonhole principle, show that if any five numbers from 1 to 8 are chosen, then two of them will add upto?

(9 marks)

01

14. (a) If $A = \{1, 2, ... n\}$ show that any function from A to A which is one to one must also be onto and conversely.

(9 marks)

(b) using Euler's theorem find 2062 mod 77.

(3 marks)

15. (a) Define is relation R on Z by aRb if 4a + b is a multiple of 5. Show that R defines an equivalence relation on Z.

(9 marks)

(b) Define partial order on a set.

(3 marks)

Or

16. (a) Let (A, \leq) be a poset and $a, b \in A$ can a and b have two least upper boomds? Explain.

(9 marks)

(b) Define Equivalence Relations.

(3 marks)

- 17. Explain the following in detail:
 - (a) Complete lattice.
 - (b) Bounded lattice.
 - (c) Complemented lattice.

 $(3 \times 4 = 12 \text{ marks})$

Or

18. Let p and q are elements in a bounded distributed lattice $(L, \leq \land, \lor)$ and if p^T is the complement of p, then show that $p \lor (p^T \land q) = p \lor q$ and $p \land (p^T \lor q) = p \land q$.

(12 marks)

19. (a) P.T. A graph G is hamiltonian iff its closure ((G) is Hamiltonian,

(6 marks)

(b) P.T. the graphs $k_{n,n}$ are Hamiltonian for every $n \ge 2$.

(6 marks)

Or

- 20. Explain in detail with example:
 - (a) Weighted Graph.
 - (b) Path.
 - (c) Cycle.
 - (d) Iso morphic graph.

 $(4 \times 3 = 12 \text{ marks})$

 $[5 \times 12 = 60 \text{ marks}]$

F	6907
_	~~~

(Pages: 3)

Reg.	No	
Nam	e	

B.TECH. DEGREE EXAMINATION, NOVEMBER 2017

Third Semester

Branch: Computer Science and Engineering/Information Technology
CS 010 305/IT 010 304—SWITCHING THEORY AND LOGIC DESIGN [CS, IT]

(New Scheme—2010 Admission onwards)

[Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

Each question carries 3 marks.

- 1. What are the applications of grey code.
- 2. Differentiate between PAL and PLA.
- 3. Draw the logic diagram of SR latch.
- 4. Differentiate combinational and sequential circuits.
- 5. What is fundamental mode operation in Asynchronous circuits?

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each question carries 5 marks.

- 6. State distributive law and Convert the hex number F3A2 to binary and octal.
- 7. Draw the internal circuit diagram of a 8×1 multiplexer and give the truth table.
- 8. Write short note on design of clocked sequential circuits using state equations.
- 9. Define BCD counter. Draw the logic diagram of 4-bit Binary counter with parallel load.
- 10. Write short note on fault tolerance in combinational circuits.

 $(5 \times 5 = 25 \text{ marks})$

Turn over

Part C

Answer all questions. Each full question carries 12 marks.

- 11. Design and implement:
 - (i) Three bit binary-to-gray converter; and
 - (ii) Four bit gray-to-binary converter.

Or

- 12. Convert to Canonical forms:
 - (i) $F_1(X, Y, Z) = XY + Z$.
 - (ii) $F_2(X, YZ) = (X + Y')(X' + Z)$.
 - (iii Using K map, simplify the following expression and implement them using N A N D gates $F_1(A, B, C, D) = \sum m(1, 5, 6, 7, 11, 12, 13) + \sum d(10, 15)$.
- 13. Explain in detail about full order and realize 2 bit binary parallel with logic diagram and truth table.

01

14. (i) Implement the following functions using PLA having 3 inputs, 4 product terms and 3 outputs.

$$F_1(A, B, C) = \sum m(3, 5, 6, 7); F_2(A, B, C) = \sum m(0, 2, 5, 7); F_3(A, B, C) = \sum m(1, 2, 5, 7);$$

(ii) Implement the function using only one 8×1 multiplexer where the binary inputs A, B, C are connected to the selection lines S_0 , S_1 and S_2 respectively.

$$F(A, B, C, D) = \sum m(0, 2, 3, 6, 8, 9, 11, 13).$$

(8 + 4 = 12 marks)

15. A sequential circuit has three D flip flops A, B, C and one input \times . It is described by the following flip flop input functions $T_A = (BC' + B'C) X + (BC + B'C') X'$; $T_B = A + B$; $D_C = B$. the output Y = AB + X. Derive the state table. Draw the state diagram for X = 1.

 O_1

16. With neat sketch explain the working of Master Slave JK flip flop.

17. Design a three-bit synchronous counter that goes through the following states 1, 2, 4, 6, 0... Use T flip flops for realisation.

Oi

- 18. Describe shift register. Explain the various types of shift registers.
- 19. What is hazard and essential hazard? Explain the hazards in combinational circuits and sequential circuits.

Or

20. Explain with Boolean difference method for fault diagnosis in digital circuits.

 $(5 \times 12 = 60 \text{ marks})$