F	6920
r	0740

(Pages: 2)

Reg. No.....

Name.....

B.TECH. DEGREE EXAMINATION, NOVEMBER 2017

Third Semester

Branch—Information Technology

IT 010 305—PRINCIPLES OF COMMUNICATION ENGINEERING [IT]

[New Scheme—2010 Admission onwards]

(Supplementary)

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

Each question carries 3 marks.

- 1. Enumerate the characteristics of communication channels.
- 2. Define modulation index. Write its significance.
- 3. Define PM. Write its advantages.
- 4. Define Noise. Write the types of noise.
- 5. State and explain sampling theorem.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each question carries 5 marks.

- 6. Explain the concept of superheterodyne receiver.
- 7. Explain the features and applications of VSB.
- 8. What is the need for pre and de-emphasis?
- 9. Define Noise figure. Explain its significance.
- 10. Differentiate PPM from PDM.

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions. Each question carries 12 marks.

11. Discuss the principle of microwave communication system with a neat block diagram.

Or

- 12. Differentiate TRF receiver from superheterodyne receiver. Explain the block schematic of TRF receiver in detail.
- 13. Derive the mathematical representation of AM wave. Explain with diagrams.

Or

- 14. Discuss DSB-SC modulation with diagrams.
- 15. Derive the mathematical representation of FM wave. Explain the features of FM wave with examples.

Or

- 16. Compare and contrast AM, FM and FM.
- 17. Derive the relation between noise figure and noise temperature. Explain the terms.

Or

- 18. Define and explain the characteristics of receivers, in detail.
- 19. Explain a method to generate PPM from PLM with a neat diagram.

Or

- 20. Write technical notes on:
 - 1. DPCM.
 - 2. PAM.

 $(5 \times 12 = 60 \text{ marks})$