F 7079

(Pages: 3)

Reg. No.....

B.TECH. DEGREE EXAMINATION, NOVEMBER 2017

Fifth Semester

Branch: Information Technology

IT 010 505—LANGUAGE TRANSLATORS (IT)

(New Scheme-2010 Admission onwards)

[Improvement/Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

Each question carries 3 marks.

- 1. Differentiate interpreters and compilers. Give an example for each.
- 2. What are ambiguous grammars? Give an example of an ambiguous grammar.
- 3. Compare L-attributed and S-attributed definition.
- 4. What are the issues in the design of a code generator?
- 5. What do you mean by Data flow analysis? What is its relevance in compiler design?

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer **all** questions. Each question carries 5 marks.

- 6. Explain the concept of input buffering during lexical analysis.
- 7. What is left factoring? What is the problem created by left factors? How is it eliminated?
- 8. Write the translation scheme for addressing array elements. Produce the three-address code for the following statement:

C = a + B[i, j].

9. Construct a Directed Acyclic Graph (DAG) for the basic block given below and simplify the three-address code using the DAG:

a = b + c

b = a - d

c = b + c

d = a - d.

10. Explain the principal sources of optimization.

 $(5 \times 5 = 25 \text{ marks})$

Turn over

Part C

Answer all questions. Each full question carries 12 marks.

11. In the context of a compiler, briefly describe the output of each major compilation phase for the assignment statement x = y * z + 5 + 8, where x, y and z are real numbers. State any assumptions you make.

Or

- 12. Explain a lexical analyser generator. Write regular expressions for identifying numbers and identifiers, and draw transition diagrams for the same.
- 13. Show that the following grammar is LR(1) but not LALR(1):

 $S \rightarrow Aa \mid bAc \mid Bc \mid bBa$

 $A \rightarrow d$

 $B \rightarrow d$

Or

14. Consider the following grammar:

 $S \rightarrow FR$

 $R \rightarrow *S \mid E$

 $F \rightarrow id$

Construct the predictive parser table M for the above grammar.

15. Explain the various methods of symbol table organization.

Or

- 16. What are type systems? Explain the type checking in arithmetic expressions and assignment statements.
- 17. Write syntax directed translation to convert:
 - (i) Assignment statement.
 - (ii) Relational expression.
 - (iii) For statements.

to three-address code.

Or

18. What are the functions of code generation? Write a simple code generation algorithm. Show how the code is generated for the statement w := (A-B)*(A-C-B)+(A-B-C). Assume only two registers are available.

19. Consider the following code fragment given below:

Begin

for
$$i := 1$$
 to n do
for $j := 1$ to n do
 $C\{i, j\} := 0$;
for $k : 1$ to n do
 $C\{i, j\} := C\{i, j\} + A[i, k] * B[k, j]$;

End

Perform the following:

- (i) Partition into Basic blocks.
- (ii) Find the loops in the flow graph.
- (iii) Perform code optimization.

Or

20. Explain Data flow analysis of structured flow graphs.

 $(5 \times 12 = 60 \text{ marks})$

17. (a) $\frac{dy}{dx} = 2e^x - y$, y(0) = 2, y(0.1) = 2.01, y(0.2) = 2.04, y(0.3) = 2.09. Find y at 0.4 and 0.5 using Milne's predictor-corrector method.

(6 marks)

F 7793

(b) Solve $\frac{dy}{dx} = \frac{1}{1+x^2} - 2y^2$, y(0) = 0 at x = 0.5 in 2 steps using Runge-Kutta 4th order method. (6 marks)

Or

18. (a) Solve $\frac{dy}{dx} = x + y$, y(1) = 0 at 1.1 and 1.2 using Taylor series method. (6 marks)

(b) Find y at 1.2 and 1.4 using Euler's modified method given $\frac{dy}{dx} = x^2 + y$, y(1) = 2. (6 marks)

19. (a) Use duality to solve:

$$Maximise Z = 2x_1 + x_2$$

subject to
$$x_1 + 2x_2 \le 10$$

$$x_1 + x_2 \le 6$$

$$x_1-x_2\leq 2$$

$$x_1-2x_2\leq 1$$

$$x_1, x_2 \geq 0$$

(6 marks)

(b) Solve the following transportation problem :-

Destination

	D_1	D_2	D_3	D_4	D_{5}	D_6	Available
S ₁	9	12	9	6	9	10	5
S_2	7	3	7	7	5	5	6
S_3	6	5	9	11	3	11	2
S_4	6	8	11	2	2	10	9
Requirements		4	6	2	4	2	(6 marks

Or

20. Apply MODI method to obtain solution of the transportation problem given below based on the data given:

	D_1	D_2	D_3	D_4	Supply
S_1	19	30	50	10	7
S_2	70	30	40	60	9
S_3	40	8	70	20	18
Demand	5	. 8	7	14	34

(12 marks) $[5 \times 12 = 60 \text{ marks}]$

F 7793

(Pages: 4)

Reg. No.....

B.TECH. DEGREE EXAMINATION, NOVEMBER 2017

Fifth Semester

Common to all Branches Except C.S. and I.T.

EN 010 501 A-ENGINEERING MATHEMATICS-IV

(New Scheme-2010 Admission onwards)

[Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

Each question carries 3 marks.

- 1. Show that the function $\frac{1}{2} \log (x^2 + y^2)$ is harmonic.
- 2. Find the poles and residues for $f(z) = \frac{z^2}{(z^2 + 3z + 2)^2}$
- 3. Show that there is an order of convergence called quadratic for Newton's Raphson method.
- 4. Given $\frac{dy}{dx} = x + y$, y(0) = 1. Find y(0.1) by Euler's method.
- 5. Construct the dual of the L.P.P.

Minimise
$$Z = 4x_1 + 14x_2 + 3x_3$$

subject to
$$-x_1 + 3x_2 + x_3 \ge 3$$

$$2x_1 + 2x_2 - x_3 \ge 2$$

$$x_1, x_2, x_3 \ge 0.$$

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each question carries 5 marks.

6. Find the bilinear transformation which maps the points z = 1, i, -1 onto the points w = i, 0, -i.

Turn over

- 7. Expand $f(z) = \frac{1}{(z-1)(2-z)}$ as a Laurent series valid for 1 < |z| < 2.
- 8. Find a root of $x^3 9x + 1 = 0$ in (2, 4) by bisection method.
- 9. Find y at x = 0.1. Using Taylor series method to 5 decimal places $\frac{dy}{dx} = x^2y 1$, y(0) = 1.
- 10. Using Graphical method:

Maximize $Z = 3x_1 + 2x_2$

subject to $x_1 - x_2 \le 1$, $x_1 + x_2 \ge 3$, $x_1, x_2 \ge 0$.

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer any one full question from each module. Each full question carries 12 marks.

11. (a) Show that $u = x^2 - y^2 - \frac{x}{x^2 + y^2}$ is harmonic. Find its harmonic conjugate and the analytic function f(z) whose real part is u.

(6 marks)

(b) If f(z) is analytic inside a circle c with, centre at a, then prove that for any z inside c,

$$f(z) = f(a) + (z - a) f'(a) + \frac{(z - a)^2}{2!} f''(a) + \dots + \frac{(z - a)^n}{n!} f^n(a) + \dots$$
 (6 marks)

- 12. (a) Find the images of the circles |z|=1 and |z|=2 under the mapping $w=z+\frac{1}{z}$. (6 marks)
 - (b) Evaluate $\int_{C} \frac{(z^2+5)}{(z-2)(z-3)} dz$ and C is the circle |z|=4. (6 marks)

- 13. (a) State Cauchy's integral theorem. Use the theorem to evaluate the $\oint \frac{dz}{z+2}$ where C is the unit circle |z|=1 traversed in the anti-clockwise direction.
 - (5 marks)
 - (b) Define the residue of a function at a pole. Derive an expression for residue at a pole of order n. Hence computer the residues of $f(z) = \frac{z+1}{z^2(z-2)}$.

(7 marks)

14. (a) Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent's series valid for the region 1 < |z| < 3. (6 marks)

(b) Using Residue theorem evaluate $\int_{0}^{\pi} \frac{ad\theta}{a^{2} + \sin^{2}\theta}$. (6 marks)

15. (a) Using regula-falsi method, find the root correct to 3 decimal places of the equation $x^4 - x - 10 = 0$, given that root lies between 1.8 and 2.0.

(6 marks)

(b) Using Gauss -Seidel iteration method, solve the following system of equations:

$$10x - 2y - z - u = 3$$

$$-2x + 10y - z - u = 15$$

$$-x - y - 10z - 2u = 27$$

$$-x - y - 2z + 10u = -9$$

(6 marks)

Or

16. (a) Derive an iterative formula to find the square root of a number using Newton-Raphson method and hence find $\sqrt{15}$.

(6 marks)

(b) Find the smallest positive root of $x^2 | \sin \sqrt{x} | = 5$ using Bisection method. Carry out 4 iterations.

(6 marks)

Turn over