A B1A004 (2016)

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER B.TECH DEGREE EXAMINATION, DEC 2016 (2016 ADMISSION)

Course Code: MA 101 Course Name: CALCULUS

Max. Marks: 100 Duration: 3 Hours

PART A

Answer ALL questions

- 1 (a) Determine whether the series $\sum_{k=1}^{\infty} \left(\frac{3}{4}\right)^{k+2}$ converges and if so, find its (2) sum.
 - (b) Find the Maclaurin series for the function xe^x (3)
- 2 (a) If $= x^y$, then find $\frac{\partial^2 z}{\partial x \partial y}$ (2)
 - (b) Compute the differential dz of the function $z = tan^{-1}(xy)$. (3)
- 3 (a) Find the domain of $r(t) = \langle \sqrt{5t+1}, t^2 \rangle, t_0 = 1$ and $r(t_0)$ (2)
 - (b) Find the directional derivative of $f(x,y) = e^{2xy}$ at P(5,0), in the (3) direction of $u = -\frac{3}{5}i + \frac{4}{5}j$
- 4 (a) Evaluate $\int_0^1 \int_0^1 \frac{dxdy}{\sqrt{1-x^2}\sqrt{1-y^2}}$ (2)
 - (b) Use double integration to find the area of the plane region enclosed by the given curves $y = \sin x$ and $y = \cos x$ for $0 \le x \le \frac{\pi}{4}$
- 5 (a) Confirm that $\varphi(x, y, z) = x^2 3y^2 + 4z^3$ is a potential function for $F(x, y, z) = 2xi 6yj + 12z^2k$. (2)
 - (b) Evaluate $\int F \cdot dr$ where $F(x, y) = \sin x i + \cos x j$ where C is the curve (3) $r(t) = \pi i + t j$, $0 \le t \le 2$
- 6 (a) Using Green's theorem evaluate $\oint y dx + x dy$, where C is the unit (2) circle oriented counter clockwise.
 - (b) If σ is any closed surface enclosing a volume V and = 2xi + 2yj + (3) 3zk, Using Divergence theorem show that $\int_{\sigma} \int F \cdot n \, dS = 7V$

PART B

(Each question carries 5 Marks) Answer any TWO questions

- 7 Test the nature of the series $\sum_{k=1}^{\infty} \frac{4k^3 6k + 5}{8k^7 + k 8}$
- 8 Check whether the series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k^k}{k!}$ is absolutely convergent or not.
- Find the radius of convergence and interval of convergence of the series $\sum_{k=1}^{\infty} \frac{(x-5)^k}{5^k}$

Answer any TWO questions

- If u = f(y z, z x, x y), prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$
- 11 A function $f(x,y) = x^2 + y^2$; is given with a local linear approximation L(x,y) = 2x + 4y 5 to f(x,y) at a point P. Determine the point P.
- Find the absolute extrema of the function f(x, y) = xy 4x on R where R is the triangular region with vertices (0,0) (0,4) and (4,0).

Answer any TWO questions

- Evaluate the definite integral $\int_0^1 (e^{2t}i + e^{-t}j + 2\sqrt{t} k)dt$.
- Find the velocity, acceleration, speed, scalar tangential and normal components of acceleration at the given t of $r(t) = 3 \sin t \ i + 2 \cos t \ j \sin 2t \ k \ ; \ t = \frac{\pi}{2}$
- Find the equation of the tangent plane and parametric equation for the normal line to the surface $z = 4x^3y^2 + 2y 2$ at the point (1,-2,10)

Answer any TWO questions

- 16 Evaluate the integral $\int_0^4 \int_y^4 \frac{x}{x^2 + y^2} dx dy$ by first reversing the order of integration.
- Evaluate $\int_0^1 \int_{v^2}^1 \int_0^{1-x} x \, dz dx dy$
- Find the volume of the solid in the first octant bounded by the co-ordinate

A = B1A004 (2016)

planes and the plane x + y + z = 1

PART C

(Each question carries 5 Marks) Answer any THREE questions

- Find div F and curl F of $F(x, y, z) = x^2yi + 2y^3zj + 3zk$
- Show that $\nabla^2(r^n) = n(n+1)r^{n-2}$ where r = ||xi + yj + zk||
- Find the work done by the force field $F(x,y,z) = (x^2 + xy) \ i + (y x^2y)j \quad \text{on a particle that moves}$ along the curve $C: x = t, y = \frac{1}{t}$, $1 \le t \le 3$
- Evaluate $\int F \cdot dr$ where F(x, y) = y i x j along the triangle joining the vertices (0,0), (1,0), and (0,1).
- Determine whether F(x, y) = 4y i + 4xj is a conservative vector field. If so, find the potential function and the potential energy.

Answer any THREE questions

- Using Green's theorem evaluate $\oint_C (e^x + y^2) dx + (e^y + x^2) dy$ where C is the boundary of the region between $y = x^2$ and y = 2x.
- Evaluate the surface integral $\int_{\sigma} \frac{x^2 + y^2}{y} dS$ over the surface σ represented by the vector valued function $r(u, v) = 2\cos vi + uj + 2\sin vk$, $1 \le u \le 3$, $0 \le v \le \pi$
- Using Divergence Theorem evaluate $\iint_{\sigma} F \cdot n \, ds$ where F(x, y, z) = (x z)i + (y x)j + (2z y)k, σ is the surface of the cylindrical solid bounded by $x^2 + y^2 = a^2$, z = 0, z = 1.
- Determine whether the vector field $F(x,y,z) = 4(x^3 x)i + 4(y^3 y)j + 4(z^3 z)k$ is free of sources and sinks. If it is not, locate them.
- Using Stokes theorem evaluate $\int_C F \cdot dr$ where $F(x, y, z) = x^2i + 4xy^3j + y^2xk$, C is the rectangle: $0 \le x \le 1, 0 \le y \le 3$ in the plane = y