A B2A0104

Reg No.:____

Total Pages: 2

(6)

(5)

Name:_

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITYSECOND SEMESTER B.TECH DEGREE EXAMINATION, JULY 2017

Course Code: MA102

	Course Name: DIFFERENTIAL EQUATIONS	
Max. N	Marks: 100 Duration: 3 H	Hours
	PART A	
	Answer all questions. Each carries3 marks.	
1	Find a second order homogeneous linear ODE for which e ^{-x} and e ^{-2x} are the solutions.	(3)
2	Find a basis of solutions of $y^{11} - y^1 = 0$.	(3)
3	Find the particular integral of $(D^2 - 4)y = x^2$.	(3)
4	Solve $(D^2 + 3D + 2)y = 5$.	(3)
5	Expand $\pi x - x^2$ in a half range sine series in the interval (0, π).	(3)
6	Expand f(x) in Fourier series in the interval (-2, 2) when $f(x) = \begin{cases} 0 & -2 < x < 0 \\ 1 & 0 < x < 2 \end{cases}$	(3)
7	Obtain the partial differential equation by eliminating the arbitrary function from $z = f(x^2 + y^2)$.	(3)
8	Solve $xp + yq = 3z$.	(3)
9	Using the method of separation of variables solve $u_{xy} - u = 0$.	(3)
10	Write down the possible solutions of one dimensional wave equation.	(3)
11	Find the solution of one dimensional heat equation in steady state condition.	(3)
12	State one dimensional heat equation with boundary conditions and initial conditions for solving it.	(3)
	PART B	
	Answer six questions, one full question from each module.	
	Module 1	
13 a)	Reduce to first order and solve $x^2y^{11} - 5xy^1 + 9y = 0$. Given $y_1 = x^3$ is a solution.	(6)
b)	Solve the initial value problem $4y^{11} - 25y = 0$ where $y(0) = 0$, $y^{1}(0) = -5$.	(5)
	OR	
14 a)	, 1	(6)
1.	second order linear ODE having these functions as solutions.	(5)
b)	Solve $y^{1V} - 2y^{111} + 5y^{11} - 8y^1 + 4y = 0$.	(5)
1.5	Module 1I	(6)
15 a)	Solve $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = 10\left(x + \frac{1}{x}\right)$.	(6)
b)		(5)
	OR	

16 a) Solve $y^{11} + y = \text{Cosec } x \text{ using the method of variation of parameters.}$

b) Solve $(D^2 - 2D + 1)y = xSinx$.

A B2A0104

Module 1II

17 a) If $f(x) = x + x^2$ for $-\pi < x < \pi$ find the Fourier series expansion of f(x). (6)

b) Express f(x) = |x| $-\pi < x < \pi$ as Fourier series. (5)

OR

18 a) Obtain Fourier series for the function $f(x) = \begin{cases} \pi x & when \ 0 \le x \le 1 \\ \pi(2-x) & when \ 1 \le x \le 2 \end{cases}$ (6)

b) Obtain the half range cosine series for f(x) = x in the 2interval $0 \le x \le \pi$. (5) Hence show that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.

Module 1V

19 a) Solve $xp - yq = y^2 - x^2$. (6)

b) Solve $\frac{\partial^2 z}{\partial x^2} - 7 \frac{\partial^2 z}{\partial x \partial y} + 12 \frac{\partial^2 z}{\partial y^2} = e^{x-y}$. (5)

OR

20 a) Solve $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} = SinxCos2y$. (6)

b) Solve $p - 2q = 3x^2 Sin(y + 2x)$. (5)

(10)

Module V

21 Derive one dimensional wave equation.

ΛR

22 a) A tightly stretched homogeneous string of length 1 with its fixed ends at x = 0 and (10) x = 1 executes transverse vibrations. Motion starts with zero initial velocity by displacing the string into the form $f(x) = k(x^2 - x^3)$. Find the deflection u(x,t) at any time t.

Module VI

Find the temperature distribution in a rod of length 2m whose end points are (10) maintained at temperature zero and the initial temperature is $f(x) = 100(2x - x^2)$.

OR

A long iron rod with insulated lateral surface has its left end maintained at a (10) temperature 0°C and its right end at x=2 maintained at 100°C. Determine the temperature as a function of x and t if the initial temperature is

$$u(x,0) = \begin{cases} 100x & 0 < x < 1 \\ 100 & 1 < x < 2 \end{cases}$$
