E	E5839	Pages: 2
Reg No ·	Name:	

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIFTH SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018

Course Code: CE309

Course Name: WATER RESOURCES ENGINEERING (CE)

Max. Marks: 100 Duration: 3 Hours

PART A

		Answer any two full questions, each carries 15 marks	Marks
1	a)	Explain the components in a hydrological cycle with a neat sketch.	(5)
	b)	How can you obtain the optimum number of rain gauges in a catchment area?	(5)
	c)	Differentiate mass curve and hyetograph.	(5)
2	a)	Explain the methods to find the average precipitation over a catchment area.	(6)
	b)	The isohyets for annual rainfall over a catchment were drawn and areas of strips	(5)
		between isohyets are obtained as below. Determine the average depth of annual	
		rainfall over the area.	

Isohyets(mm)	450-550	550-650	650-750	750-950	950-1150	1150-1250
Area (km²)	1200	3000	2800	1000	900	600

c) Define infiltration indices.

(4)

3 a) List and explain factors affecting runoff in a catchment area.

- (5)
- b) What is unit hydrograph? Stating the assumptions, explain the derivation of a unit hydrograph from a storm hydrograph. (5)
- c) Ordinates of 2 hourunit hydrograph are given below. Using this derive the ordinates of a 6 hour unit hydrograph using S hydrograph method.

Time (hrs)	0	2	4	6	8	10	12	14	16	18	20	22
Ordinate of 2 hour unit hydrograph (cumec)	0	25	100	160	200	170	110	70	30	20	8	0

PART B

Answer any two full questions, each carries 15 marks

4 a) Write the environmental effects of irrigation.

(4)

b) Differentiate between flow and lift irrigation systems.

- (4)
- c) Gross command of a reservoir is 50,000 hectares. The CCA is 80% of GCA. Find out the capacity of the reservoir which is able to irrigate areas as given below. Reservoir and canal losses may be taken as 5% each of water required by crops.

Crop	Base period (days)	Duty (hectares/cumec)	Intensity of irrigation as % of CCA
Wheat	120	2000	25
Rice	140	900	18.75
Cotton	180	1600	12.50

- 5 a) Define field capacity, permanent wilting point and available moisture.
- (4)

(6)

b) A loam soil has field capacity 27% and permanent wilting percentage 12%. The dry weight of the soil is 13.73 kN/m³. If the depth of the rootzone is 1 m, determine the storage capacity of the soil. Irrigation water is applied when the

E		E5839 Pages	Pages: 2			
		moisture content drops to 15%. If the water application efficiency is 75%,				
		determine the water depth require to be applied in the field.				
	c)	Define duty and delta. Derive the relation between them.	(5)			
6 a)		What is river training? What are the objectives of river training? What are the classifications?				
	b)	Explain Guide banks and groynes with neat sketches.	(7)			
		PART C				
		Answer any two full questions, each carries 20 marks				
7	a)	What are the storage zones in a reservoir?	(5)			
	b)	Define trap efficiency. Explain the method to find useful life of a reservoir.	(10)			
	c)	Differentiate mass curve and demand curve.	(5)			
8	a)	Define porosity, specific yieldand specific retention. Establish a relation between them.	(5)			
	b)	Explain and derive steady state flow to wells in a confined aquifer.	(10)			
	c)	Explain Darcy's law.	(5)			
9	a)	Explain recuperation method to find yield from an open well.	(5)			
	b)	A well is to be constructed in a fine sandy subsoil formation. The discharge of the well is anticipated to be $0.004 \text{ m}^3/\text{sunder depression head of } 4 \text{ m}$. Find the diameter of the well. Given (K/A) for sandy soil = $0.5 \text{ m}^3/\text{hr/m}^2$ of area under depression head of 1 m.	(8)			
	c)	Explain with sketch strainer type tube well. ****	(7)			