Reg No.:	Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018

Course Code: CE 302 Course Name: DESIGN OF HYDRAULIC STRUCTURES (CE)

Max. Marks: 100 Duration: 4 Hours

Use of Khosla's Chart, Blench Curves and Montague Curves (signed by the concerned faculty member) may be permitted.

Two answer books may be used if required.

PART A

		Answer any two full questions, each carries 15 marks.	Marks
1	a)	What are the general considerations for Canal alignment?	(5)
	b)	What are the assumptions of Khosla's theory for design of impermeable	(5)
		foundation?	(-)
	c)	What is a Cross Drainage work? Explain the types of Cross drainage work.	(5)
2	a)	Draw a neat sketch of layout of a Diversion headwork and explain the functions of components.	(10)
	b)	What are the limitations of Bligh's theory of design of impermeable foundation?	(3)
	c)	What is a Canal regulator?	(2)
3	a)	Design an irrigation channel to carry a discharge of 65 cumecs. Assume	(8)
		Rugosity coefficient = 0.0215 .Critical velocity ratio = 1. Channel has a bed slope of 0.15 m/km	
	b)	Using Khosla's theory ,determine the pressure at C1 with interference correction	(5)
		(Use Khosla's curves)	
		160 m ▽	

Page 1 of 3

A A6809 Pages: 3

c) What is the difference between weir and barrage?

PART B

(2)

Answer any one full question, each carry 50 marks.

Design a suitable cross drainage work for the following data at the crossing of a canal and a drainage

CANAL

Full supply discharge = 45 cumecs

Full Supply level = RL 217.00

Canal bed level = RL 213.00

Canal bed width = 20 mCanal water depth = 1.7 m

Trapezoidal canal section with 1.5 H : 1V slope (50)

DRAIN

High flood discharge = 280 cumecs

High flood level = RL 210

High flood depth = 2.5 m

General ground level = RL 214.00

Prepare the following drawings (not to scale)

- i) Half sectional plan at foundation level
- ii) Section through the centre line of the drain
- 5 Design a Sarda type fall with a drop of 1.5 m for the following data

Upstream

Discharge = $55 \text{ m}^3/\text{s}$

Bed width = 28 m

Bed level = RL 218.00

Full supply depth = 2 m

Full supply level = RL 219.50 (50)

Downstream

Discharge = $55 \text{ m}^3/\text{s}$

Bed width = 28 m

Bed level = RL 216.50

Full supply depth = 2 m

Full supply level = RL 218.00

Prepare the following drawings (not to scale)

- i) Half plan at top and at foundation level
- ii) Longitudinal Section through the centre line of the canal

PART C Answer any two full questions, each carries 10 marks.

- 6 a) What is a Spillway? Explain Ogee type of spillway. (6)
 - b) What is meant by Elementary profile of a gravity dam? (2)
 - c) What are the functions of Water stops in gravity dam? (2)
- 7 a) What is a Stilling basin? Explain Type I and Type II stilling basins (6)
 - b) Explain thin cylinder method of design of Arch dam (2)
 - c) What are the functions of gallery in a gravity dam? (2)
- 8 Determine the maximum and minimum vertical stresses at heel and toe, major principal stress at toe and intensity of shear stress on a horizontal plane near toe of the dam.

Weight of concrete = 23.5 kN/m^3 . Top width of dam = 8 m, Bottom width = 24 m

Allowable stress in concrete = 2500 kN/m^2

