B3C066 Total Pages:2

Reg. No. Name: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, JANUARY 2017 Course Code: IT201 Course Name: DIGITAL SYSTEM DESIGN (IT) Max. Marks: 100 **Duration: 3 Hours PART A** Answer any 2 questions. Each question carries 15 marks. 1) a) Convert 203.52₁₀ to binary and hexadecimal. (5) b) Divide binary numbers 11011.1₂ by 101₂ **(4)** c) Subtract 46.5₁₀ from 125.5₁₀ using 2's complement arithmetic. (3) d) Compare 1's and 2's methods of representations. (3) 2) a) Reduce following expressions by using K-map. (9)

 $A\overline{B}C + \overline{B} + B\overline{D} + AB\overline{D} + \overline{A}C$

b) Implement following expression in NOR logic.

(4)

 $AB + \bar{C}D(\bar{B} + \bar{D})$

c) Convert following expressions to minterm.

(2)

 $ABCD + AB\bar{C} + ACD$

3)

a) Reduce following expressions by using K-map

(9)

$$(B+\bar{C})(A+B+\bar{D})(\bar{A}+C+D)(B+C+D)$$

b) Without reducing, convert following expression to NAND logic.

(4)

$$C\overline{D}(A+B)+D(A+BC)$$

c) Convert following expressions to maxterm.

(2)

$$(A + \overline{B} + C)(B + C + \overline{D})(\overline{A} + \overline{B} + D)$$

C B3C066 Total Pages:2

PART B

Answer any 2 questions. Each question	on carries 15 ma	rks.
---------------------------------------	------------------	------

		Answer any 2 questions. Each question carries 13 marks.		
4)				
	a)	Design full adder circuit and implement with both basic logic gates and with NAND		
		logic gates.	(10)	
	b)	Draw and explain 4 bit BCD adder circuit with correction detector circuit.	(5)	
5)				
	a)	ign full subtractor circuit and implement with both basic logic gates and with		
		NAND logic gates.	(10)	
	b)	Draw and explain 4 bit adder/subtractor circuit	(5)	
6)				
	a)	Write in detail about the following flip flop characteristics: propagation delay time		
		maximum clock frequency, power dissipation and set-up time.	(8)	
	b)	Design a monostable multivibrator by using NOR gate and inverter. Explain its		
		working with the help of waveforms.	(7)	
		PART C		
		Answer any 2 questions. Each question carries 20 marks.		
7)				
	a)	Design a 3 bit up/down synchronous counter and implement by using JK flip flop.		
		Explain the working with state diagram.	(12)	
	b)	Discuss 4 bit SERIAL-IN SERIAL-OUT RIGHT SHIFT shift register using JK	shift register using JK and	
		SR flip flops with the help of timing diagram.	(8)	
8)				
	a)	Design and implement a counter that goes through 1,3,4,6,10,12,14,2,1,3,4 using	ng T	
		flip flops by eliminating lock out (in the case of invalid states, go to initial state)	(12)	
	b)	Draw and explain a 4 bit ring counter with state diagram and timing diagram. Use	JK	
		flip flops.	(8)	
9)				
	a)	Discuss Booth multiplication algorithm. Multiply 7 and -3 using this algorithm.	(12)	
	b)	Write a short notes on mask-programmed ROM and programmable ROM	(8)	
