B B3809 Pages: 2

Reg No.:	Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018

Course Code: CS201

Course Name: DISCRETE COMPUTATIONAL STRUCTURES (CS, IT)

Max. Marks: 100 Duration: 3 Hours

PART A

Answer all questions, each carries 3 marks Marks

- Let $X = \{1,2,3,4\}$ and $R = \{\langle x,y \rangle | x > y\}$. Draw the graph of R and also give its matrix. (3)
- Define countable and uncountable set. Prove that set of real numbers are (3) uncountable.
- 3 State Pigeonhole principle. A school has 550 students. Show that at least two of them were born on the same day of the year.
- How many 4-digit numbers can be formed from six digits 1, 2, 3, 5, 7, 8. Also (3) find how many numbers are less than 4500.

PART B

Answer any two full questions, each carries 9 marks

- 5 a) Let Z be the set of integers and R be the relation called congruence modulo 3 defined by R = {<x,y>| x and y are elements in Z and (x-y) is divisible by 3}.

 Determine the equivalence classes generated by the elements of Z.
 - b) Let A be the set of factors of a particular positive integer m and let <= be the relation divides, ie relation <= be such that x<=y if x divides y. Draw the Hasse diagrams for m= 30 and m= 45.
- 6 a) Let f(x) = x+2, g(x) = x-2 and h(x) = 3x for x is in R, where R is the set of real numbers. Find gof, fog, (foh)og, hog. (4)
 - b) Among 100 students, 32 study mathematics, 20 study physics, 45 study biology, (5) 15 study mathematics and biology, 7 study mathematics and physics, 10 study physics and biology and 30 do not study any of the three subjects.
 - i) Find the number of students studying all three subjects.
 - ii) Find the number of students studying exactly one of three subjects.
- Solve the recurrence equation a_{r} + 5 a_{r-1} + 6 a_{r-2} = 42 4^{r} where a_2 = 278 and a_3 (4) = 962.
 - b) Define Monoid. Show that the algebraic systems $\langle Z_m, +_m \rangle$ and $\langle Z_m, *_m \rangle$ are (5) monoids where m = 6.

PART C

Answer all questions, each carries 3 marks

- Define Abelian group. Prove that the algebraic structure $\langle Q^+, * \rangle$ is an abelian group. * defined on Q + by a * b = (ab)/2.
- 9 Define Cosets and Lagrange's theorem. (3)
- Draw the diagram of lattices $\langle Sn, D \rangle$ for n = 15 and n = 45. Where Sn be the set (3)

- (5)
 - b) Show that $(\sim p \land (\sim q \land r)) \lor (q \land r) \lor (p \land r) \iff r$ (5)
- 16 a) Show that s v r is tautologically implied by $(p \vee q) \wedge (p \rightarrow r) \wedge (q \rightarrow s)$ (5)
 - Show that $r \wedge (p \vee q)$ is a valid conclusion from the premises $p \vee q$, $q \rightarrow r$, b) (5) $p \rightarrow m$, and $\sim m$
- 17 "If there are meeting, then traveling was difficult. If they arrived on time, then (6)traveling was not difficult. They arrived on time. There was no meeting". Show that the statements constitute a valid argument.
 - Construct truth table for \sim (p ^ q) <-> (\sim p v \sim q). Determine whether it is (4) tautology or not.
- 18 Show that (x) $(P(x) -> Q(x)) \land (x) (Q(x) -> R(x)) => (x) (P(x) -> R(x))$ (5)
 - Prove that $(\exists x) (P(x) \land Q(x)) \Rightarrow (\exists x) P(x) \land (\exists x) Q(x)$ b) (5)
- 19 Symbolize the statements: (4) i) All the world loves a loverii) All men are giants.
 - Show that $(\exists x) M(x)$ follows logically from the premises (x) (H(x) -> M(x)) and (6) $(\exists x) H(x)$
- Prove by contradiction that if n² is an even integer then n is even. 20 (5) a)
 - Prove that $23^n 1$ is divisible by 11 for all positive integers n. (5)