B4C102

Reg. N		No Name:	
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY	
		FOURTH SEMESTER B.TECH DEGREE EXAMINATION, JUNE 2017	
		Course Code: IT202	
		Course Name: ALGORITHM ANALYSIS AND DESIGN (IT)	
	Max.	Marks: 100 Duration: 3 Hot	ırs
		Answer any 2 questions.	
1	a.	What is an asymptotic notion? Give the different notations used to represent the	(10)
		complexity of algorithms?	
	b.	Write down the control abstraction for divide and conquer?	(5)
2	a.	Give the divide and conquer solution for binary search and analyze its	(8)
		complexity?	
	b.	What is a recurrence relation? Solve $T(n) = 2T(n/2) + C$ using recurrence trees.	(7)
3	a.	How we can prove that Stressen's matrix multiplication is advantageous over	(10)
		ordinary matrix multiplication?	
	b.	Solve the recurrence relation $T(N)=T(n-1)+1$ and $T(1) = \Theta(1)$ using iteration	(5)
		method.	
		PART B	
		Answer any 2 questions.	
4	a.	Explain (i) State space tree	(9)
		(ii) Fixed tuple formulation	
		(iii) Variable tuple formulation	
	b.	Solve knapsack problem $n=3 m=20 (P_1, P_2, P_3)=25$	(6)
5	a.	What is back-tracking? Give one problem that can be solved by back-tracking?	(5)
	b.	What is minimum spanning tree? Explain Prim's algorithm to find minimum	(10)
		spanning tree ?	
6	a.	What is the relevance of Least cost search? Give the control abstraction for Least	(8)
		cost search.	
	b.	Give the general Knap-sack problem. Suggest a method for solving it.	(7)
		PART C	
7	0	Answer any 2 questions.	(12)
/	a.	Describe Rabin-Rarp algorithm for pattern matching	(12)
	D.	Differentiate between deterministic and non-deterministic algorithms?	(5)
c	c.	what are approximation algorithms?	(3)
8	a.	Explain the backward approach in solving multistage graph problems.	(12)

C

B4C102

- b. What are comparison trees? How it can be used to find the lower bound of (8) ordered searching
- 9 a. What are rendomized algorithms? Illustrate Las-Vegas randomized algorithm for (10) performing quick sort on a set of integers.
 - b. Explain vertex cover problem using an example. Suggest an algorithm for finding (10) vertex cover of a graph.

С