B7039

Total Pages: 2	al Pages:	2
----------------	-----------	---

			101111 105031	-
Reg No.	.:		Name:	
	FIFTH		LAM TECHNOLOGICAL UNIVERSITY CCH DEGREE EXAMINATION, DECEMBER 2017	
			Course Code: IT303	
		Course Name	: THEORY OF COMPUTATION (IT)	
Max. N	Iarks: 100)	Duration: 3	Hours
			PART A	
		Answer any i	two full questions, each carries 15 marks.	Marks
1 a)	Define	the following		(3)
,		(i)	Language	
		(ii)	Finite Automata	
		(iii)	Transition diagram	
b)	-	a moore machine v en string	which count the number of occurrence of substring aab	(7)
c)	-	-	y an NFA if and only if L is accepted by DFA	(5)
2 a)	Discuss	about Chomsky cl	assification of language	(5)
b)	Prove th	ne equivalence of n	noore and mealy machine	(5)
c)	Constru	et a DFA that acc	tepts all strings on $\{0,1\}$, except those containing the	(5)
	substrin	g 001.		
3 a)	Minimi	ze the following D	FA	(7)
		0	1	
	А	В	С	
	В	D	E	
	С	F	G	
	*D	D	E	
	Е	F	G	
	*F	D	E	
	*G	F	G	
b)	Prove the	hat L is accepted by	y an NFA- ε if and only if L is accepted by NFA	(5)
c)	Define	the following		(3)
		(i)	Kleene star	
		(ii)	Concatenation	
		(iii)	Reversal	
			PART B	
		Answer any tv	vo full questions, each carries 15 marks.	

4 a) What is a regular expression? Write a regular expression that accept all strings on (5) {0,1} such that it accepts at most one pair of consecutive 1's

B7039

	b)	What is ambiguous CFG ? Show that the grammer	(5)				
		$E \to E + E E * E (E) I$					
		$I \rightarrow a b c$ is ambiguous					
	c)	Design a PDA to accept $L=\{0^n1^m0^m1^n m, n \ge 1\}$	(5)				
5	a)	State pumping lemma for regular languages. Use pumping lemma to show that $L=\{a^p p \text{ is a prime}\}$ is not regular	(8)				
	b)	Convert the grammer $S \rightarrow AB$, $A \rightarrow BS b$, $B \rightarrow SA a$ into GNF	(4)				
	c)	Construct the PDA equivalent to the following grammer	(3)				
		$S \rightarrow 0BB, B \rightarrow 0S 1S 0$					
6	a)	Use pumping lemma to show that a ⁿ n is a perfect cube is not a CFL	(5)				
	b)	Prove that regular expression is closed under homomorphism	(5)				
	c)	Give CFG for the following regular expression $(0+11)*(011)1*$	(5)				
		PART C					
Answer any two full questions, each carries 20 marks.							
7	a)	Write note on variants of Turing Machine. Show that multi tape TM is equivalent to single tape TM.	(9)				
	b)	Design a TM which finds 2's complement of a given number.	(8)				
	c)	Prove that the complement of recursive language is recursive.	(3)				
8	a)	What is Linear Bound Automata?	(5)				
	b)	Construct T.M which accepts the language $L = \{a^n b^n c^n n \ge 1\}$	(8)				
	c)	Prove that the halting problem is undecidable.	(7)				
9	a)	Explain post correspondence problem.	(5)				
	b)	Prove that universal language is recursively enumerable.	(8)				
	c)	Construct T.M which reverse a string	(7)				
