Duration: 3 Hours

B5814

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018

Course Code: IT303

Course Name: THEORY OF COMPUTATION (IT)

Max. Marks: 100

PART A Answer any two full questions, each carries 15 marks Marks a) Explain Chomsky classification of grammars. (5) b) If $\sum = \{a,b,c\}$ then write $\sum^{1}, \sum^{2}, \sum^{3}, \sum^{*}$. (4) c) Show how an NFA can be created which accepts the reverse of a language. (6) a) Design an NFA for L={w|w has at least 2 consecutive 0's or 1's over $\sum \{0,1\}$ }. (6)b) Define the language of DFA, NFA and NFA-ε. (4)c) Convert the following NFA to DFA. (5) 0 δ 1 {**p**} $\{p,q\}$ **→** p {r} q ø *r $\{p,r\}$ $\{q\}$ a) Describe the language of the following DFA. (4)0 δ 1 ►A В А *B А В b) State and prove the equivalence of NFA and DFA. (6) c) Design a Mealy machine to print 2's complement of a binary number. (5)PART B Answer any two full questions, each carries 15 marks Give regular expressions for the following: (2) a) i) Set of all binary strings beginning with 110. ii) Set of all binary strings, contains exactly three 1's. Convert the following regular expression to ε -NFA and then to NFA. b) (10)i) 011(0+1)*(0+1) ii) (a+b)(ab)* c) Define Context Free Grammar and Context Free Language. (3) a) Prove that for every regular expression, there exists a deterministic Finite (8) Automata. b) Show that the language $L = \{0^n 1^{2n} | n \ge 1\}$ is not regular. (7)a) List the applications of PDA and CFL. (4)b) Design a PDA for the language $L = \{a^{i}_{b}b^{j}_{c}k | i \neq j \text{ or } j \neq k\}$. (8)

B

1

2

3

4

5

6

B5814

	c)	Explain ambiguity in CFG with the help of an example.	(3)
		PART C	
		Answer any two full questions, each carries 20 marks	
7	a)	Show that the Universal Language is not recursive.	(10)
	b)	Design a Turing Machine for L={ww w \in {0,1}*}.	(10)
8	a)	List and explain the variants of Turing Machine, and show that they are	(12)
		equivalent to a single tape Turing Machine.	
	b)	Design a Turing Machine that performs integer addition.	(8)
9	a)	Define Halting Problem and show that it is undecidable.	(5)
	b)	What is Linear Bounded Automata?	(5)
	c)	Build a Turing Machine that accepts the language $L=\{a^nb^{2n}\}$.	(10)
