(8)

Reg	g No.	: Name:	
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018	
		Course Code: IT201	
		Course Name: DIGITAL SYSTEM DESIGN	
Ma	x. M	Duration: Duration:	3 Hours
		PART A Answer any two full questions, each carries 15 marks.	Marks
1	a)	Convert (84.25) ₁₀ to binary, octal and hexadecimal.	(3)
	b)	Perform subtraction using r's complement of the subtrahend of :	(4)
		$(5A.36)_{16} - (201.24)_{16}$	
	c)	Determine the base of the numbers in the operation; $42 - 14 = 26$.	(3)
	d)	Represent the decimal number 3581 in BCD, Excess-3 code, 2421 code, 6311	(5)
		code, and 84-2-1 code.	
2	a)	What is a prime implicant? What is an essential prime implicant? Give an	(5)
		example to distinguish between prime implicant and essential prime implicant.	
	b)	Without reducing, find the complement of the Boolean function:	(5)

 $F = B + \overline{B}(A\overline{C} + AB)$. And prove that $F + \overline{F} = 1$ and $F, \overline{F} = 0$.

c) Simplify the Boolean expression into (i) sum-of-product and (ii) product-of-sum. (5)

$F = \overline{B}\overline{C} + A\overline{B} + \overline{B}\overline{D} + AB\overline{C} + AB\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + A\overline{B}CD + \overline{A}\overline{B}CD$

3	a)	Represent the unsigned decimal numbers 572.36 and 687.73 in BCD. Show the	(7)
		necessary steps to perform the sum of these BCD numbers.	

b) Minimise the following Boolean function:

 $F(A, B, C, D) = \Sigma_m(2, 4, 5, 10, 12, 13) + \Sigma_d(0, 3, 8, 11, 15)$

PART B

Answer any two full questions, each carries 15 marks.

- Without reducing, implement the Boolean function $F = A(\overline{B}D + C) + \overline{C}D$ using (5) 4 a) NAND and INVERT gates only.
 - b) Design a full adder. Using full adders implement a 4- bit adder-subtractor circuit. (10)
- 5 What are the differences between a truth table, a state table, a characteristic table (5) a) and an excitation table?
 - b) Implement a positive edge-triggered D-flip flop using three SR latches with (10)

R3929

preset and clear. Justify your implementation.

- 6 a) Give the characteristics table for JK and T flip flop. What are the (5) characteristics equations JK and T flip-flops?
 - b) Design a code converter that converts a decimal digit from BCD to 84-2-1 code. (10)

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) What is a Universal shift register? What are the capabilities of a general(10)universal shift register? Give the circuit diagram of universal shift register.
 - b) Design a counter with binary count sequence 1-2-5-7-1. Use J-K flip-flop to (10) implement the counter. Show the complete timing diagram for eight clock pulse.
- 8 a) Write the HDL gate-level dataflow description of a four bit adder. (6)
 - b) Implement the following two Boolean functions with a PLA: (10)

$$F_1(A, B, C) = \sum (0, 2, 3, 7)$$

$$F_2(A, B, C) = \sum (0, 1, 2, 6, 7)$$

- c) List the steps that must be taken during write and read operations of a RAM? (4)
- 9 a) What are the characteristics of different types of ROM? (5)
 - b) Draw and explain the logic of a binary cell to store one bit of information. (5)
 - c) Design and construct a Johnson counter with 8 distinguishable states. Give its (10) timing diagram.
