Reg No.:		Name:	_
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019	
		Course Code: IT201	
		Course Name: DIGITAL SYSTEM DESIGN	
Ma	ıx. M	Tarks: 100Duration: 3	Hours
		PART A Answer any two full questions, each carries 15 marks.	Marks
1	a)	Convert (76.75) ₁₀ to binary, octal and hexadecimal.	(3)
	b)	Perform subtraction using 2's complement of the subtrahend of 1100.101 – 101 1011	(4)
	c)	Determine the base of the numbers in the operation; $\frac{58}{4} = 15$	(3)
	d)	Represent the unsigned decimal numbers 572.36 and 382.71 in BCD. Show the	
		necessary steps to form their sum.	(5)
2	a)	Prove that $A + \overline{AB} = A + B$ using Boolean postulates.	(5)
	b)	Find the complement of the Boolean function $F = \overline{A} + AB\overline{C}$. And prove that $F + \overline{F} = 1$ and $F, \overline{F} = 0$.	(5)
	c)	Simplify the Boolean expression to minimum number of literals.	
	,	$F = \overline{B}\overline{C} + A\overline{B} + AB\overline{C} + AB\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + A\overline{B}CD$	(5)
3	a)	Represent (+59) and (-31) as signed binary numbers using 2's complement	
		representation enough digits to accommodate the numbers. Perform the addition	(5)
		of these signed binary numbers.	

b) Minimise the following Boolean function using Quine – McClusky method

$$F(A, B, C, D) = \Sigma_{m}(2, 4, 5, 10, 12, 13) + \Sigma_{d}(0, 3, 8, 11, 15)$$
(10)

PART B

Answer any two full questions, each carries 15 marks.

4	a)	Explain the design procedure of a combination circuit	(5)
	b)	Design a look ahead carry generator to add two four-bit binary data input	(10)
5	a)	Give the characteristics equations for D, JK and T flip-flops.	(3)
	b)	Explain the state reduction in the sequential circuits using an example.	(12)

6	a)	A communication system uses four bits to transfer information. The system uses	
		even-parity to identify the error during transmission and the LSB bit represent	(4)
		the parity bit. Design a parity checker for this system.	
	b)	Design a 4-to-2 line priority encoder.	(4)
	c)	What are pulse-triggering and edge-triggering? Draw the circuit diagram of D-	

latch and D- flip-flop. Using the timing diagram of D-latch and D- flip-flop, show the difference between pulse-triggering and edge-triggering. (7)

PART C Answer any two full questions, each carries20 marks.

7	a)	Implement a serial adder using a shift register.	(6)
	b)	Design and implement a BCD ripple counter. Show the complete timing diagram	
		for 12 clock pulse.	(14)
8	a)	Write the HDL gate-level behaviour description of a four-to-one line multiplexer.	(6)
	b)	Design and implement a combinational circuit using a ROM that accepts a three-	
		bit binary number as input and outputs a binary number equal to square of the	(10)
		input number.	
	c)	What are the steps that must be taken during write and read operations of a	(A)
		RAM?	(4)
9	a)	Design and construct a 4-bit ring counter with only one flip-flop is clear at any	(10)
		particular time and all other flip-flops are set. Give its timing diagram.	(10)
	b)	Write the HDL gate-level dataflow description of a four bit adder.	(6)
	c)	Using Booth algorithm, perform multiplication of (+14) and (-7).	(4)
