Duration: 3 Hours

Reg No.:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY V SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: IT303

Course Name: THEORY OF COMPUTATION

Max. Marks: 100

PART A

Answer any two full questions, each carries 15 marks. Marks

Name:

1	a)		ne E- puted	NFA with an example. How does the E-Closure of a function is	s (7)	
	b) c)	Defi 1. A 2. St 3. Pc 4. La	ne the lphab ring ower o angua	e following terms et of an alphabet	(4)	
2	e) a)			ealy and Moore machine with example	(5)	
2	a) b)			FA for the language $L=\{w/w \text{ which contains 1101 as substring}\}$	(5)	
	c)	Writ	e app	lications of Finite state machine	(5)	
3	a)	Minimize the following automata				
			а	b		
		q0	q1	q4		
		q1	q2	q3		
		q2	q7	q8		
		q3	q 8	q7		
		q4	q5	q6		
		q5	q7	q8		
		q6	q7	q8		
		q7	q7	q7		
		* <mark>q8</mark>	q 8	q8		
	b)	State	e and	prove the equivalence of NFA and DFA	(7)	

PART B

Answer any two full questions, each carries 15 marks.

4	a)	State and prove pumping Lemma theorem for regular languages	(5)
	b)	Show that a ⁿ b ⁿ is not regular	(5)

В

В		R5948	Pages: 2								
	c)	Define ambiguity. Eliminate useless productions for the following S->A/a, B ->CA A->b	(5)								
5	a)	Convert the following DFA to regular expression where q1 is the initial and final state $0 1$	(5)								
		q1 <u>g1</u> q2									
		q2 q3 q2									
	b)	 q3 q1 q2 Write regular Expression for the strings = {0,1} 1)ends in 00 2)whose tenth symbol from the right end is 1 	(6)								
	c)	3)contains even no of zeros followed by odd no of ones Explain Arden's theorem.	(4)								
6	a)	Convert GNF	(5)								
		S>AA/a A>SS/b									
	b)	Eliminate Epsilon productions S>ABAC $A>aA/\epsilon$ $B>bB/\epsilon$ C>c	(5)								
	c)	Construct an NFA from the R.E 01*(1+0)*00	(5)								
PART C											
7	a)	Answer any two full questions, each carries 20 marks. Define the following Turing machine a) Non-Deterministic TM b) Universal TM c) Offline TM d) Multi-tape TM	(10)								
	b) c)		(5) (5)								
8	a)	Design a Turing machine to add two unary numbers represented as consecutive zeros	(15)								
	b)	Write a note on Linear bounded automata.	(5)								
9	a) b) c)	Discuss the properties of recursive and recursive enumerable language Write a note on halting problem with an example State and prove the equivalence of single tape and multi-tape Turing machine	(5) (5) (10)								
