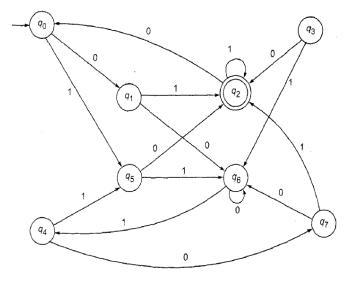
E192069

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 2019

Name:___

Course Code: IT303

Course Name: THEORY OF COMPUTATION


Max. Marks: 100

Duration: 3 Hours

PART A

			Ar	iswer any two full questions, each carries 15 marks.	Marks			
1	a)	Define			(4)			
			• Alp	habet				
		• String						
				guage				
				mmar				
	b)	Design a DFA which accepts set of all binary strings containing mod 4 (reminder when dividing with 4) as one .						
	c)							
			0	1				
		$\rightarrow p$	$\{q,s\}$	$ \begin{array}{c} 1 \\ \{q\} \\ \{q,r\} \\ \{p\} \\ \{p\} \end{array} $				
		*q	$\{r\}$	$\{q,r\}$				
		r	$\{s\}$	$\{p\}$				
		*8	Ø	$\{p\}$				
2	a)	Explain Chomsky Hierarchy of Grammars						
	b)	Design a Moore machine which calculates the sum of two positive binary (numbers						
	c)							
3	c) a)	What are the applications of finite automata?(3Explain string reversal with an example. Which automaton is suitable to reverse a(5						
	<i>a)</i>	string ?						
	b)	Distinguish between Moore and Mealy machines (4						

c) Explain the minimization of NFA. Minimize the following NFA (6)

Reg No.:____

E192069

PART B

Answer any two full questions, each carries 15 marks.

4	a)	Give a regular expression for each of the following languages.The set of binary strings not containing consecutive 0's.	(6)					
		 The set of binary strings containing exactly one instance of 111 						
		somewhere inside.						
		• The set of binary strings with at most one pair of consecutive 1's i.e,						
		if 11 is present, it can occur exactly once.						
	b)	Using pumping lemma prove that the set $\{1^n: n \text{ is a prime number}\}$ is not regular.	(4)					
	c)	Construct a PDA from the following CFG, $G = (\{S, X\}, \{a, b\}, P, S)$	(5)					
		where the productions are: S \rightarrow XAS E , A \rightarrow aXb Ab ab , X \rightarrow bab						
5	a)	Write the regular expression for the set $o\{w \mid w \text{ contains at least two 1s and at most two 0s}\}$. Also draw the DFA for it.	(4)					
	b)	Convert to Greibach Normal Form the grammar $G=({A1, A2, A3}, {a,b}, P, A1)$	(7)					
		where P consists of the following. $A_1 \rightarrow A_2A_3$, $A_2 \rightarrow A_3A_1/bb$, $A_3 \rightarrow A_1A_2/aa$.						
	c)	What are Left and right linear grammars. Give examples	(4)					
6	a)	Write the properties and rules for regular expressions	(6)					
	b)	Construct NPDA that accept the following language on $\Sigma = \{a, b, c\}$	(6)					
		$L = \{a^{n} b^{m} c^{n+m} : n \ge 0, m \ge 0\}.$						
	c)	What are the applications of PDA and CFLs	(3)					
PART C								
Answer any two full questions, each carries20 marks.								
7	a)	Construct a Turing machine for concatenation of the two strings of unary numbers.	(8)					
	b)	Show how the reduction of SAT to 3SAT can be done in polynomial-time	(6)					
	c)	Design a Turing machine that add numbers store as 0's separated by 1's	(6)					
8	a)	How can you tell a problem being decidable or undecidable ?	(6)					
	b)	What is Universal Turing machine?	(6)					
	c)	Show that TSP is NP -complete.	(8)					
9	a)	Prove that the class NP of problems solvable in non-deterministic polynomial time	(4)					
	b)	Show that there is no algorithm to decide whether or not an arbitrary Turing machine halts on all input.	(4)					
	c)	Consider the language $L = \{ww : w \in \{a, b\} + \}$.	(12)					
		Construct a standard Turing machine acepting L,Discuss the construction and efficiency of algorithms for accepting L by a two-tape turing Machine						
