Name:_____

Reg No.:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY V SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019

Course Code: IT303

Course Name: THEORY OF COMPUTATION

Max. Marks: 100

Duration: 3 Hours

Marks

PART A

	Answer any two full questions, each carries 15 marks.	Marks
a)	Define the terms:	(6)
	Concatenation	
	• Union	
	Kleene Closure	
b)	Design a Mealy machine which convert the binary input string to its 2's complement.	(5)
c)	Distinguish between NFA and DFA.	(4)
a)	What is finite state machine? What are its applications ?	(4)
b)	How is an NFA is converted into DFA? Convert NFA for accepting $(a+b)*c(d+e)*$ into corresponding DFA.	(7)
c)	Design a DFA which accepts strings of $\{a,b\}$ which are having the substring ababa	(4)
a)	How do you represent an automaton using transition diagram and tables? Explain with an example.	(6)
b)	What is mean by E-closure() and move(q,a) associated with E-NFA. Convert the following NFA to corresponding DFA.	(5)
	ϵ, b e, c ϵ, c ϵ, c e, c r	
c)	Give a DFA for the following language over the alphabet $\{0,1\}$ L={ w / w starts with 1 and has odd length, or starts with 0 and has even length }.	(4)
	PART B	
	Answer any two full questions, each carries 15 marks.	
a)	 Give a regular expression for each of the following languages. The set of binary strings not containing consecutive 1's. The set of binary strings containing exactly one instance of 11 somewhere inside. 	(6)
	• The set of binary strings with at most one pair of consecutive 1's i.e, if 11 is present, it can occur exactly once	
b)	Prove that the following language is not regular using the pumping lemma. $I = \left\{ e^n : n \text{ is a perfect square} \right\}$	(4)
c)	$L = \{ a : n \text{ is a perfect square} \}$ The following grammar generates postfix expressions with operands a and b and binary operators +, -, *and /: $G : E \rightarrow EE + EE - EE * EE/ a b$	(5)
	Page 1 of 2	

1

2

3

4

For the string ababa-*/, give a parse tree, a leftmost derivation and a rightmost derivation.

5	a)	Obtain the Chomsky Normal Form equivalent to the grammars $S \rightarrow bA/aB$,	(5)
		$A \rightarrow bAA/aS/a, B \rightarrow aBB/bS/b.$	

- Explain the term Ambiguity in Grammars and Languages (4) b) (6)
- Find the regular expression for the given DFA c)

6	a)	Construct a PDA accepting $\{a^nb^ma^n/m,n \ge 1\}$ by empty stack. Write the corresponding context-free grammar accepting the same set .	(4)
	b)	Find a GNF grammar with no useless symbol equivalent to	(6)
		$S \rightarrow AB/CA, B \rightarrow BC/AB, A \rightarrow a, C \rightarrow aB/b.$	
	c)	Explain closure properties of regular sets	(5)
		PART C	
		Answer any two full questions, each carries20 marks.	
7	a)	Explain Turing machine construction techniques.	(12)
	b)	What is polynomial time transducer?	(4)
	c)	Explain the Halting Problem of Turing Machine.	(4)
8	a)	Construct a Turing machine for the language of even number of 1's and even number of 0's over $\Sigma = \{0,1\}$	(6)
	b)	What is a Linear-bounded automata ? Explain with example.	(8)
	c)	Explain Church's thesis.	(6)
9	a)	What are the applications of TM?	(6)
	b)	Construct a Turing machine for reversing a binary string on the input tape.	(8)
	c)	Prove that the Satisfiability Problem(SAT) is NP-complete.	(6)
