Reg N	No.:			Name:						
SIZ	XTH S	APJ ABDUL K EMESTER B.TEC	AL H D	AM TECHNO EGREE COMPRE	LO CHEN	GICAL UNIV ISIVE EXAMIN	ERS ATIC	S ITY DN, MAY 2019		
		Course	nai	Course Code: 1 ne: COMPREHE	IT35 NSI	52 VE EXAM (IT)				
Max.	Marks	:: 50	/ IIUI					Duration: 1 Hour		
Instru	ctions:	 (1) Each question carries one mark. No negative marks for wrong answers (2) Total number of questions: 50 (3) All questions are to be answered. Each question will be followed by 4 possible answers of which only ONE is correct. (4) If more than one option is chosen, it will not be considered for valuation. (5) Calculators are not permitted PART A- COMMON COURSES 								
1.	The s	slope of the surface z	= <i>x</i> e	$e^{-y} + 5y$ in the x-dire	ectior	n at the point (4,0)	is			
2.	a) The s	0 solution of $(D^2 + 1)$	b) v = (-1) is	c)	1	d)	2		
3.	a) A sin	$c_1 \cos x + c_2 \sin x$ apple spring mass vibr	b) ating	$c_1e^x + c_2e^{-x}$ g system has a natural then the natural free	c) al fre	$(c_1 + c_2 x)e^x$ quency of N. if the	d) sprin	$(c_1 + c_2 x)e^{-x}$ g stiffness is		
	a)	N	b)	0.5N	c)	2N	d)	0.25N		
4.	The p	proportion of second of a rectangle will be	mom	nent of area about ce	ntroi	dal axis to second	mome	ent of area about		
	a)	0.3	b)	0.1	c)	0.25	d)	0.08333		
5.	An <u>al</u>	gorithm for <u>scheduli</u>	ng a	set of project activit	ies:					
	a)	Critical Path Method	b)	Crucial Practicing Method	c)	Centre Processing Method	d)	None		
6.	The f impro and s	fundamental rethinkir ovements in critical c peed:	ig an onte	d radical redesign of mporary measures of	f the f per	business process to formances such as	o achie cost,q	eve dramatic uality,service		
	a)	Recycling	b)	Quality	c)	Contemporary	d)	Re -		
7.	Com	posting is		engmeering		uesign		engmeering		
	a)	anaerobic degradation process for solid waste treatment	b)	anaerobic treatment for sullage	c)	aerobic treatment for sewage	d)	an aerobic degradation process for solid waste treatment		

8. The rating system of India which is focussed on conservation and efficient energy use is

Pages: 6

V1114

	a)	GRIHA	b)	LEED India		c)	IGBC	d)	BEE		
9.	In or	thographic projection	on, ead	ch projection view	<i>w</i> rej	prese	ents how many dir	mensio	ns of an object?		
	a)	1	b)	2		c)	3	d)	0		
10.	The front view, side view and top view of a cylinder standing on horizontal plane base on horizontal plane										
	a)	circle, rectangle and rectangle	b)	rectangle, rectangle and circle PART B- CC)RF	c)	rectangle, circle and rectangle URSES	d)	circle, triangle and triangle		
11.	In mu	Iltiple Bus organisat	ion, tl	ne registers are co	ollec	tivel	y placed and refer	rred as			
	a)	Set registers	b)	Register file		c)	Register Block	d)	Map registers		
12.	The r	egisters, ALU and th	ne inte	erconnection betw	veen	ther	n are collectively	called	as		
	a)	Process route	b)	Gatings		c)	Information patl	hd)	Data Path		
13.	In	protocol the i	nforn	nation is directly	writ	ten iı	nto the main mem	lory.			
	a)	Write through	b)	Write back		c)	Load Through	d)	Copy back		
14.	In memory mapped I/O										
	a)	The I/O devices and memory share the same address space	b)	The I/O devices have a separate address space		c)	A part of memory is specifically set aside for the I/O operation	d)	The memory and I/O devices have an associated address space		
15.	is the delay between the time an interrupt request is received and the start of execution										
	of the a)	interrupt service ro Interrupt delay	utine. b)	Cycle time		c)	Interrupt latency	/ d)	Switching time		
16.	method is used to establish priority by serially connecting all devices that request an										
	interr a)	upt. Vectored interrupt	b)	Polling	c)	Da	aisy Chain d)	Priorit	y arbitration		
17.	Mov al,[bx] Which addressing mode does this instruction use :										
	a)	Register indirect	b)	Base index		c)	Base index plus displacement	d)	Register		
18.	The c	ontext-free language	es are	closed for:							
	(i) Int	tersection		(ii) Union							
	(iii) C	Complementation	(iv) Kleene Star							
	a)	(i) and (iv)	b)	(i) and (iii)		c)	(ii) and (iv)	d)	(ii) and (iii)		
19.	The r by	egular expression de	enotin	g the set of all str	rings	s not	containing two co	onsecut	ive 0's is given		

Pages: 6

V1114

	a)	$(1+01)^*$	b)	(1+01)*(ε+0)	(a)	(& +0)(10	01)*(<i>ε</i>	(b)	(0+10)*(<i>ε</i> +1)
						+0)				
20.	Whi	ch of the following la	nguage	es is regular?						
	a)	$\{ww^R \mid w \in \{0,1\}^+\}$	b)	$\{ww^Rx \mid x\}$	x, w ∈	$\{0,1\}^+\}$				
	c)	$\{wxw^R \mid w, x \in \{0,1\}^+\}$	d)	${xww^R \mid x}$	x, w ∈	$\{0,1\}^+\}$				
21.	Read	 the following statem For every NFA with only one final state Regular sets are closed 	ents: ith an e. osed u osed u osed u e true?	arbitrary number nder infinite unio nder infinite inte nder substring op	on rsectio oratio	nal states, r on on	there is a	an equi	valent NFA wi	th
	a)	1 only	b)	1,2 only	c) 1,2,3 on	ly	d)	2,3,4 only	
22.	Con	sider the grammar giv	en bel	ow:						
	S->	$AB \mid DA , A \rightarrow a \mid$	BC a	BCAD Da aBl	D aC	BD aSBC	D			
	B->	BCD ABD CC b	, C->	aBD a aBCAI	D Da	B , D -> a	a b			
	the l	anguage generated by	the gr	ammar is :						
	a)	Empty b)	finit	e	c)]	Infinite	d) Fin	ite but	not regular	
23.	ε-clo	osure is defined as:								
24.	 a) the set of states being reached through ε- b) the set of states being reached after ε- transitions from a starting state. c) the set of states being reached before ε- d) transitions from a starting state. b) the set of states being reached before ε- d) the set of states being reached without ε- transitions from a starting state. c) the set of states being reached before ε- d) the set of states being reached without ε- transitions from a starting state. c) Consider the languages L1 = {0ⁱ1^j i != j}, L2 = {0ⁱ1^j i = j}, L3 = {0ⁱ1^j i = 2j+1}, L4 = {0ⁱ1^j i 							8- 6-		
	!- 2)}. Only I 2 is contaut for			b)	Only I 1 on	d I O ama	contor	t frag	
	a)	Only L2 is context free	ontovi	froo	d)	$\frac{1}{1}$	u L2 are		taxt free	
25	с) То я	Concess the services of c	onerati	ng system the in	u) terfac	e is provide	and L_{+}			
23.	10 u	System calls	b)		licituc) Library	,	(b	Assembly	
26	a) Con	sider the following set	t of pr	ocesses with arr	ival ti	mes and the	e require	d CPU	instructions	ven
20.	in m	illiseconds	t or pr		i vui ti		erequire	u er e	buist units gr	, cu
		Process		Arriv	al tim	e		Burst	Time	٦
		D1			0	~		Durst	1	-
		D2			2				7	
		r 2		1	2			4	<u>_</u>	

P3

3

1

V1114

	What is the sequence in which the processes are completed? Assume Round Robin Scheduling with a time quantum of 2 milliseconds.									
	a)	P1, P2, P3	b)	P2, P1, P3	c)	P3, P2, P1	d)	P2, P3, P1		
27.	In order to allow only one process to enter the Critical Section, binary semaphore is initialized to:									
	a)	0	b)	1	c)	2	d)	3		
28.	Given p FIFO pa	bage reference string age replacement is u	: 1,2 sed	2,3,4,2,1,5,6,2,1,2,3,7 , find count of page-1	,6,3, fault	2,1,2,3,6 . If memo	ory wi	th 4 frames and		
	a)	10	b)	17	c)	14	d)	16		
29.	The cire	cular wait condition	can	be prevented by						
20	a)	defining a linear ordering of resource types	b)	using thread	c)	using pipes	d)	Banker's algorithm		
30.	File typ	e can be represented	l by				•			
	a)	File extension	b)	File name	c)	File identifier	d)	Root Directory		
31.	Which of the following page replacement algorithms suffers from Belady's anomaly?									
	a)	FIFO	b)	LRU	c)	Optimal	d)	Both LRU and FIFO		
32.	While designing a typical database system for a large organization, who is NOT an actor of the scene?						n actor of the			
33.	a) SOL qu	Database Administrators ery language is	b)	Database Designers	c)	Cloud Managers	d)	End Users		
	a)	Nonprocedural	b)	Procedural	c)	Object oriented	d)	All the above		
34.	A is a special kind of a stored procedure that executes in response to certain action on									
	the table like insertion, deletion or updation of data.									
	a)	Assertions	b)	Functions	c)	Triggers	d)	Views		
35.	Which of the following is not Armstrong's Axiom?									
	a)	Transitivity rule	b)	Augmentation rule	c)	Reflexivity rule	d)	None of the above		
36.	In data file, first record of any of block is called									
	a)	Anchor record	b)	Dense record	c)	Non dense record	d)	None of the above		
37.	Which o	one is true about cluste	red i	ndex?						
	a)	Clustered index is not associated with table	b)	Clustered index is built by default on unique key columns	c)	Clustered index is NOT built on unique key columns	d)	None of the above		

38. Consider the following transactions:

T1: read (A) ;	
read (B);	
<i>if A</i> = 0 <i>then B</i> : =	= B + 1;
write (B);	
T2: read (B) ;	
read (A);	
<i>if B</i> = 0 <i>then A</i> : =	=A+1;
write (A);	

Assuming data items A and B initialized to zero, any non-serial interleaving of T1 and T2 for concurrent execution leads to:

	a)	A serializable schedule	b)	A schedule that is not conflict serializable	c)	A conflict serializable schedule	d)	A schedule for which a precedence graph cannot be drawn			
39.	Which	h is the following is	the w	ell-known port numb	er of	f SMTP?					
	a)	23	b)	25	c)	21	d)	53			
40.	Which	n layer is responsibl	le for	process-to-process de	liver	y of the entire mes	sage.				
	a)	Physical	b)	Data link	c)	Transport	(d)	Network			
41.	The message 11001001 is to be transmitted using the CRC polynomial $x^3 + 1$ to protect it from errors. The message that should be transmitted is:										
	a)	11001001000	b)	11001001011	c)	11001010	d)	10010010011			
42.	In based	CSMA protoco on the outcome of	ol, afte a rand	er the station finds the	e line r.	e idle, it sends or re	efrains	s from sending			
	a)	Non-persistent	b)	0-persistent	c)	1-persistent	d)	p-persistent			
43.	The _	routing u	ises th	e Dijkstra algorithm	to bu	ild a routing table.					
	a)	Distance vector	b)	Link state	c)	Path vector	d)	None of the above			
44.	Which	n of the following is	s true	with respect to TCP							
	a)	Connection- oriented	b)	Process-to-process	c)	Transport layer protocol	d)	All of the mentioned			
45.	What	is the time complex	kity of	insert(index) method	l in A	ArrayList					

V1114

	a)	O(n)	(b)	$O(n^2)$	c)	O(n logn)	d)	O(log n)
46.	The n	umber of leaf nodes	in a c	complete binary tree	of de	pth d is		
	a)	2^d	(b)	$2^{d-1}+1$	c)	$2^{d+1} + 1$	(d)	2 ^d +1
47.	Consi X. Wł	der a node X in a Bi nich of the following	nary ' g is tru	Tree. Given that X haus about Y?	as tw	o children, let Y be	Inor	der successor of
	a)	Y has no right	b)	Y has no left child	c)	Y has both	d)	None of the
		child				children		above
48.	Pre-or	der traversal on a tro	ee is s	similar to tr	aver	sal on a graph.		
	a)	Depth first	b)	Breadth first	c)	Level order	(d)	In-order
49.	Evalu	ate the postfix expre	ssion	ab+cd / - where a=	5,b=	4, c=9, d=3		
	a)	23	b)	10	c)	15	(d)	6
50.	State ' i) Bina ii) The	True or False. ary search is used fo e time complexity of	r seai f bina	rching in a sorted arra ry search is O(log n).	ıy.			
	a)	True False	(b)	False True	c)	True True	d)	False False

U