Reg No.:___

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third semester B.Tech degree examinations (S) September 2020

Course Code: MA201

Course Name: LINEAR ALGEBRA AND COMPLEX ANALYSIS

Max. Marks: 100

1

Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks Marks a) Find out and give reason whether f(z) is continuous at z = 0(7) $f(z) = \begin{cases} \frac{Re \, z}{1 - |z|}, z \neq 0\\ 0, z = 0 \end{cases}$ b) Determine a so that $u = e^{-\pi x} \cos ay$ is harmonic and then find the harmonic (8) conjugate. 2 a) Determine the region of the w-plane into which the triangle formed by x =(7)1, y = 1 and x + y = 1 is mapped under the transformation $w = z^2$ b) Check whether $f(z) = e^z$ is analytic everywhere. (8)

3 a) Find the image of
$$-\frac{1}{2} \le x \le \frac{1}{2}, -\pi < y < \pi$$
 under $w = e^z$ (7)

Find the linear fractional transformation that maps 0,1,2 onto 1, $\frac{1}{2}$, $\frac{1}{3}$ (8) b)

PART B

Answer any two full questions, each carries 15 marks

4 a)	Evaluate \int_0^4	$z^{i+2i} \bar{z} dz$ along the curve given by $z = t^2 + it$	(7)
h		27-1	(8)

b) Evaluate
$$\int_C \frac{zz-1}{z^2-z} dz$$
 along the curve C: $|z| = 3$ using Cauchy's integral formula. (8)

5 a) Find the Laurent's series expansion of
$$f(z) = \frac{1}{z^2 + 3z + 2}$$
 in the region (7)
 $1 < |z| < 2$

b) Find all singularities and the corresponding residues (i)
$$\frac{8}{1+z^2}$$
 (ii) tanz (8)

6 a) Evaluate
$$\int_C \frac{e^z}{\cos \pi z} dz$$
 where c is the unit circle $|z|=1$ using Residue Theorem. (7)
b) Evaluate $\int_0^{2\pi} \frac{d\theta}{2+\cos\theta}$ (8)

PART C

Answer any two full questions, each carries 20 marks

7 a) Solve by Gauss elimination (8
$$5x - 6y + 4z = 15, 7x + 4y - 3z = 19, 2x + y + 6z = 46$$

3)

02000MA201092001

b) Find the rank of
$$\begin{bmatrix} 6 & 0 & -2 & 0 \\ 0 & -1 & -1 & 5 \\ 2 & -1 & -1 & 0 \end{bmatrix}$$
 (6)

c) Let $V = \{(v_1, v_2, v_3) \in R^3: 3v_2 + v_3 = 2\}$. Is V a vector space under the usual (6) operations in R^3 ?

a)
Find the eigen values and eigen vectors of
$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 (10)

8

b) Is the matrix
$$A = \frac{1}{9} \begin{bmatrix} -8 & 4 & 1 \\ 1 & 4 & -8 \\ 4 & 7 & 4 \end{bmatrix}$$
 orthogonal? (5)

c) Check whether {(2,0,0,7), (2,0,0,8), (2,0,0,9), (2,0,1,0)} are linearly (5) independent in R^4

⁹ a) Diagonalize
$$\begin{bmatrix} -19 & 7 \\ -42 & 16 \end{bmatrix}$$
 (8)

b) Transform to principal axis and find what kind of conic section is given by the (12) quadratic form $4x^2 + 12xy + 13y^2 = 16$
