Pages: 2

Reg No.:_____

Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth semester B.Tech examinations (S), September 2020

Course Code: EE304 Course Name: ADVANCED CONTROL THEORY

Max. Marks: 100 Durati		B Hours					
	PART A						
	Answer all questions, each carries5 marks.	Marks					
1	What is a PI controller? What are its effects on the system performance?						
2	What is a lead compensator? Obtain its frequency response characteristics						
3	What is state space? What are the advantages of state space analysis?						
4	What is pulse transfer function? What is the stability criterion of a sampled data control system?						
5	Mention any two characteristics of Nonlinear systems. What are limit cycles?						
6	Define Describing function. What is the difference between stability analysis of linear and nonlinear systems?						
7	What is the difference between describing function and phase plane method of stability analysis?						
8	Explain Liapunov direct method of stability for nonlinear systems.	(5)					
	PART B						
	Answer any two full questions, each carries10 marks.						
9	The open loop transfer function of a unity feedback control system is given by						
	G(S) = K/[S(1+0.5S)(1+0.2S)]. It is desired that (i) the steady state error to unit ramp						
	input is less than 0.125 (ii) Phase margin≥300 (iii) Gain margin≥10 db. Design a						
	suitable compensator.						
10	Design a suitable compensator for a unity feedback system with open loop transfer						
	function $G(S)=K/[S(S+4)(S+7)]$ to satisfy the following specifications.						
	(1)Percentage overshoot=12.63% (2)Natural frequency of oscillation=8						
	rad/sec(3)Velocity error constant≥2.5.						
11	Explain the Ziegler-Nichols method of tuning a PID controller when (a) dynamic	(10)					

model is known (b) dynamic model is not known.

03000EE304052001

PART C Answer any two full questions, each carries10 marks.

					-					
12	a)	Obtain the sta	te model of	the system	whose transfer fur	ction is giv	en by		(5)	
		Y(s)/U(s) = 10	$\frac{1}{(s^3+4s^2+2s^2)}$	s+1]						
	b)	Obtain the sta	te model of	a field cont	rolled DC motor.				(5)	
13		A discrete tim	ne system is	described b	y the difference ec	juation			(10)	
		<i>y</i> (<i>k</i> +2)+5 <i>y</i> (<i>k</i> +	1)+6 $y(k)=u$	(<i>k</i>)						
		<i>y</i> (0)= <i>y</i> (1)=0;	T=1 sec.							
		(a) Determine	state mode	te model in a canonical form (b) Find the state transition matrix						
14		Check the stability of the sampled data control system with the following characteristic								
		equation using	g Jury's stal	bility test z^4	$-1.7z^3 + 1.04z^2 - 0.2$	68z+0.024=	:0		(10)	
15	PART D Answer any two full questions, each carries 10 marks. Derive the Describing function of saturation with deadzone.									
16		Construct	the	phase	trajectory	for	the	system	(10)	
		$\dot{x_1} = x_2, \dot{x_2} =$	$-sign(x_1)$)wheresigr	$n(x_1) = \begin{pmatrix} 1 for x_1 \\ -1 for x_2 \end{pmatrix}$	$\begin{vmatrix} > 0 \\ 1 \le 0 \end{vmatrix}$ starts	ing from (2	,0)		
17		Test the stability of the system using Lyapunov stability theorem						(10)		
		(a) $\dot{x_1} = -$	$-x_1 + 2x_1^2$	$x_2, \dot{x_2} = -x$	2					
		(b) $\dot{x_1} = x_1$	$x_2, \dot{x_2} = -s$	$in(x_1) - x_2$						
