Reg No.:_

Name:___

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree (S,FE) Examination December 2020 (2015 Scheme)

Course Code: ME205

Course Name: THERMODYNAMICS

Ma	ıx. M	Iarks: 100 Duration: 3	Hours
		PART A Answer any three full questions, each carries 10 marks.	Marks
1	a)	Discuss the following i) Macroscopic and Microscopic approaches in thermodynamics with suitable example. ii) Thermodynamic Equilibrium	(6)
	b)	Explain the Zeroth law of thermodynamics and its significance.	(4)
2	a)	Explain temperature scale. How can the ideal gas temperature for the steam point be measured?	(4)
	b)	Show that work is a path function and not a property. Why does free expansion have zero work transfer?	(6)
3	a)	Define enthalpy. Why the enthalpy of an ideal gas does depend only on temperature?	(5)
	b)	A gas expands from initial state where the pressure is 340 kPa and the volume is 0.0425 m ³ to a final pressure of 136 kPa. The relationship between the pressure and volume of the gas is $pv^2 = c$ constant. Determine the work for the process.	(5)
4	a)	Derive the steady flow energy equation.	(5)
	b)	Air enters a compressor operating at steady state at a pressure of 1 bar, a temperature of 290 K, and a velocity of 6 m/s through an inlet with an area of 0.1 m^2 . At exit, the pressure is 7 bar, the temperature is 450 K and the velocity is 2 m/s. heat transfer from the compressor to the surroundings occurs at the rate of 180kJ/min. Employing the Ideal gas model, calculate the power input to the compressor. Take cp = 1.005 kJ/kgK.	(5)
		PART B	
		Answer any three full questions, each carries 10 marks.	

- 5 a) State the Kelvin-Plank statement of the second Law. To produce network in a (5) thermodynamic cycle, a heat engine has to exchange heat with two thermal reservoirs. Explain.
 - b) Establish the equivalence of Kelvin-Planck and Clausius Statements. (5)
- 6 a) A refrigeration plant for a food store operates as a reversed Carnot heat engine (6) cycle. The store is to be maintained at a temperature of -5° C and the heat transfer from the store to the cycle is at the rate of 5 kW. If heat is transferred

from the cycle to the atmosphere at a temperature of 25°C, calculate the power required to drive the plant.

- b) Explain the causes of irreversibly. (4)
- 7 a) "Second law is also known as the law of degradation of energy", Justify. (4)
 - b) A volume vessel of volume 0.04 m³ contains a mixture of saturated water and (6) saturated steam at a temperature of 250°C. The mass of the liquid present is 9 kg. Find the pressure, the mass, the specific volume, the enthalpy, the entropy and the internal energy.
- 8 a) Show that the efficiency of the reversible heat engine operating between two (5) given constant temperature is the maximum.
 - b) Draw the phase diagram for a pure substance on h-s plot with relevant constant (5) property line.

PART C

Answer any four full questions, each carries 10 marks

- 9 a) Express the changes in internal energy and enthalpy of an ideal gas in a (6) reversible adiabatic process in terms of pressure ratio.
 - b) How does the Vander Waal's equation differ from the ideal gas equation of (4) states?
- 10 a) Define law of corresponding state. What is compressibility factor? (5)
 - b) State Dalton's law of partial pressures. How is the partial pressure in a gas (5) mixture related to the mole fraction?
- 11 a) Write Berthelot, Dieterici and Redlich-Kwong equation of real gas.(6)
 - b) State and explain Amagat's law of partial volume of gas mixture. (4)
- 12 Write down the first and second TdS equations, and derive the expression for (10) the difference in heat capacities C_p and C_v . What does the expression signify?
- 13 a) Define Joule Thompson co-efficient. Why is it zero for an Ideal gas? (5)
 - b) State Helmholtz function and Gibbs function.
- 14 a) Write short notes on enthalpy of formation and enthalpy of combustion. (5)
 - b) Define Isothermal compressibility and coefficient of volume expansion. (5)

(5)

Page 2 of 2