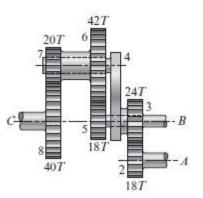
Reg No.: Name:	
----------------	--

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Regular and Supplementary Examination December 2020

		Course Code: ME301		
Course Name: MECHANICS OF MACHINERY				
Max. Marks: 100 Duration: 3 Ho				
		PART A		
		Answer any three full questions, each carries 10 marks.	Marks	
1		Explain with neat sketch, an application each of the four inversions of slider crank mechanism.	10	
2		In a four-link mechanism, the crank AB rotates at 36 rad/s , the lengths of the links are AB = 200mm , BC = 400mm , CD = 450mm and AD = 600mm . AD is the fixed link. At the instant when AB is at right angles to AD, determine the velocity of the midpoint of link BC.	10	
3		In a single slider crank mechanism, the lengths of the crank and connecting rod are 300 mm and 400 mm respectively. The slider is positioned in line to the crank axis at a distance of 500 mm. At a particular instant, the crank is inclined at 110° with the line of motion of the slider. It is rotating with an angular velocity of 70 rad/s and angular acceleration 900 rad/s² in the clockwise direction. Compute the acceleration of the slider and angular acceleration of the connecting rod.	10	
4		a) Sketch the displacement, velocity, acceleration and jerk diagrams of a cam	4	
		follower which moves with cycloidal motion. b) List the different types of cams based on their shape? Sketch any one type of cam.	6	
		PART B		
		Answer any three full questions, each carries 10 marks.		
5		Design a cam profile as per the data given;	10	
		a) The least radius of the cam is 30 mm.		
		b) The cam is rotating a speed of 1600 rpm counter clockwise.		
		c) The axis of the knife edge follower is offset by 10 mm to the left.		
		d) The follower is provided a maximum lift of 40 mm during 160° of the cam rotation subjected to constant acceleration and deceleration.		
		e) Dwell for the 40° rotation of the cam.		
		f) Drop of the follower for the next 100° rotation of the cam with SHM and followed by dwell.		
6		a) Explain tangent cam with neat sketch.	3	
		b) Obtain the condition for minimum acceleration for a tangent cam with roller follower, when the roller is on the flank.	7	
7	a)	State and prove the law of gearing.	5	

06000ME301122001


- b) Distinguish between the cycloid and involute forms of gear teeth.
- 5
- 8 Derive an expression for the minimum number of teeth in an involute profile gear.

3 10

PART C

Answer any four full questions, each carries 10 marks.

In the given gear train, the shaft B is stationary and shaft C is driven at 380 rpm in the counter clockwise direction. Determine the speed and direction of rotation of shaft A.

a) Sketch a reverted gear train and epicyclic gear train.

- 4
- b) Establish the relation between speed ratio and train value of a simple gear train.
- 6
- 11 a Discuss the method of determining the angles for input and output link in a four-bar mechanism for function generation with an example.
- 5

5

- b The motions of the input and output links are related by the equation $y = x^2$. The range of x is from 1 to 4. Find x and y values using Chebychev spacing for five precision points.
- 10
- In a slider crank mechanism, for the three position coordination, the angular displacements of the crank are 40° and 100°. The respective linear displacements of the slider are 120 mm and 220 mm. The eccentricity of the slider is 20 mm. Design the mechanism graphically.
- Synthesize a four-bar mechanism to guide a rod (coupler) AB through three 1 consecutive positions A_1B_1 , A_2B_2 and A_3B_3 as follows.
 - 10

A₁ (3,0), B₁ (3,5), A₂ (11,7), B₂ (6,7), A₃ (5,2) and B₃ (8,6)

- 10
- The motions of the input and output links of a four-bar mechanism are governed by the function $y = 3x^2$. The x varies from 1 to 3 with an interval of 1. Assume the input angle varies from 30° to 110° and output angle varies from 70° to 130° . Synthesize the mechanism using Freudenstien's equation.
