Reg No.:_____

Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Regular and Supplementary Examination December 2020

Course Code: ME309

Course Name: METALLURGY AND MATERIALS SCIENCE

Max. Marks: 100

Duration: 3 Hours

PART A

		Answer any three full questions, each carries 10 marks.	Marks	
1	a)	Obtain the atomic packing factor for FCC crystal structure.	(4)	
	b)	Sketch the following Miller indices in a cubic unit cell. $(1\ 2\ 0)$, $(0\ \overline{1}\ 0)$ and $[1\ 0\ 1]$	(6)	
2	a)	Copper has an atomic radius of 0.128 nm, an FCC crystal structure and an atomic		
		weight of 63.5 g/mol. Determine its theoretical density.	(4)	
	b)	Explain the mechanism of plastic deformation by slip and twinning.	(6)	
3	a)	Give the significance of Frank Read source in dislocation.	(4)	
	b)	Differentiate edge dislocation and screw dislocation in relevance with Burger's		
		vector.	(6)	
4	a)	Compare SEM and TEM.	(4)	
	b)	State and explain Fick's laws of diffusion.	(6)	
		PART B		
Answer any three full questions, each carries 10 marks.				
5	a)	Enumerate the Hume-Rothery rules for substitutional solid solution.	(4)	
	b)	Explain the changes in microstructure when a 0.6% carbon steel is cooled from	(6)	
		austenite to room temperature.		
6	a)	Sketch the iron-carbon equilibrium diagram and explain the three invariant	(6)	
		reactions in it.		
	b)	Compare carburizing and flame hardening techniques of surface treatment.	(4)	
7		Explain the microstructure, properties and applications of different types of cast		
		iron.	(10)	
8	a)	How does age hardening improve the strength of an aluminium alloy?	(5)	
	b)	Give the significance of adding alloying elements in steel. Explain the effects of		
		adding any four alloying elements in steel with their specific functions.	(5)	

00000ME309121901

PART C

Answer any four full questions, each carries 10 marks.

9		With a neat sketch explain the procedure for fatigue testing and draw the S-N	(10)
		curve.	
10	a)	Explain the importance of Griffith's theory in brittle fracture of materials.	(5)
	b)	Illustrate DBTT in steels.	(5)
11	a)	Differentiate ductile fracture and brittle fracture.	(5)
	b)	Explain five methods to improve fatigue life of components.	(5)
12	a)	Define creep. List any four factors affecting creep rate.	(5)
	b)	Classify and explain the different types of composites.	(5)
13	a)	Describe the different types of nuclear materials.	(5)
	b)	Explain the role of biomaterials in medical application.	(5)
14	a)	Compare the properties and applications of super alloys and intermetallics.	(5)
	b)	Classify ceramics. Give two applications of ceramics.	(5)
