Reg No.:	Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth Semester B.Tech Degree Regular and Supplementary Examination July 2021

Course Code: EE302 Course Name: ELECTROMAGNETICS

			Course Name: ELECTROMAGNETICS	
			Duration: 3 Hours	
			PART A Answer all questions, each carries 5 marks.	Marks
	1		State Stoke's theorem and explain its significance.	(5)
	2		The region between two concentric right circular cylinders contains a uniform	(5)
			volume charge density ρ . Solve the Poisson's equation for the potential in the	
			region.	
	3		State Ampere's circuital law and using it derive the expression for magnetic	(5)
			field intensity around an infinitely long straight current carrying conductor	
	4		What is electric polarization? How dielectrics are classified based on	(5)
			polarization?	
	5		Using Poynting Theorem derive an expression for power flow in a co-axial	(5)
			cable	
	6		What are uniform plane waves? Explain.	(5)
	7		Explain phase velocity and group velocity.	(5)
	8		What is skin depth? Explain.	(5)
			PART B	
			Answer any two full questions, each carries 10 marks.	
	9		Verify divergence theorem for the vector field $\mathbf{D}=2\rho z^2 a_\rho + \rho \cos^2 \Phi a_z$ over the	(10)
			region defined by $0 \le \rho \le 5$, $-1 \le z \le 1$ and $0 \le \Phi \le 2\pi$.	
	10	a)	State and prove Gauss's Law.	(4)
		b)	A circular ring of radius a carries a uniform charge ρ_L C/m and is placed on the	(6)
			xy-plane and centerd at origin. Derive an expression for electric field intensity	
			at a point (0, 0, h) on the axis of the ring.	
	11	a)	Explain the physical significance of gradient of a scalar quantity and curl of a	(5)
			vector quantity.	
		b)	What is an equipotential surface? What are its properties?	(5)

03000EE302052004

PART C

Answer any two full questions, each carries 10 marks.

- State and explain Biot-Savart Law. Apply Biot-Savart's Law to derive an (10) expression for magnetic field intensity due to a straight current carrying conductor of finite length.
- 13 a) Apply amperes circuital law to find magnetic field intensity due to an infinitely (5) long straight conductor.
 - b) From Faraday's Law, derive Maxwell's Equations in Differential and integral (5) form.
- Derive an expression for electrostatic energy in terms of electric field intensity. (10)

PART D

Answer any two full questions, each carries 10 marks.

- From Maxwell's equations, derive wave equations for free space. Also write (10) wave equations in phasor form.
- 16 a) Explain about electromagnetic interference and electromagnetic compatibility. (5)
 - b) A uniform plane wave in free space is given by $\mathbf{E}=10.4\times 10^{-6}e^{j(2\pi\times 10^9t-\beta x)}a_y\text{V/m. Find (i) Direction of propagation (ii) wave}$ velocity (iii) Phase constant β
- For a lossy dielectric material having $\mu_r = 1$, $\varepsilon_r = 48$, $\sigma = 20\Omega^{-1}m^{-1}$. At a (10) frequency of 16 GHz, calculate the (i) propagation constant (ii) attenuation constant (iii) phase constant and (iv) wavelength
