Reg No.:_____ Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth Semester B.Tech Degree Regular and Supplementary Examination July 2021

Course Code: EE304 Course Name: ADVANCED CONTROL THEORY

Max. Marks: 100 Duration: 3 Hours

PART A

Answer all questions, each carries 5 marks. Marks

- Sketch the realisation of a phase lead compensator and derive its transfer (5) function.
- Identify the dominant poles of the unity feedback system with open loop (5) transfer function $G(s) = \frac{168}{(s+2)(s+5)(s+15)}$.
- Compute the solution to the state equation $\dot{x} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} x$, $x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (5)
- Sketch the block schematic of a system controlled by a digital controller and (5) list the additional components that appears in a system with digital controller.
- 5 Distinguish between inherent and intentional nonlinearities. Give examples (5)
- Define describing function? What is the assumption that makes the application (5) of describing function analysis?
- 7 List the characteristics that are observed in nonlinear system. (5)
- Identify the equilibrium points for the system $\dot{x_1} = x_2$, $\dot{x_2} = -0.5x_2$ (5) $sin(x_1)$.

PART B

Answer any two full questions, each carries 10 marks.

- Design a suitable compensator for the unity feedback system with transfer (10) function $G(s) = \frac{1}{s(s+1)}$ to satisfy the following specifications so that the gain cross over frequency is approximately 1 rad/s. Velocity error constant at least $10s^{-1}$. Phase margin greater than 40° .
- Design a suitable compensator for the system $G(s) = \frac{3}{s(s+3)}$ to achieve an overshoot less than 20%, settling time less than 1.5s for unit step input. Velocity error constant at least $5s^{-1}$.

03000EE304052002

- 11 a) Design a P, PI and PID controller for the system with transfer function (6) $G(s) = \frac{20}{s(s+2)(s+10)}$ by applying Zeigler-Nichols tuning method.
 - b) Draw the realisation of PID controller and explain its working. (4)

PART C

Answer any two full questions, each carries 10 marks.

- Convert the system $\dot{x} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u, y = \begin{bmatrix} 1 & 1 \end{bmatrix} x$ into controllable cannonical form by applying similarity transformation.
 - b) Determine the stability of the system $\dot{x} = \begin{bmatrix} -3 & 7 & 9 \\ 2 & 1 & 3 \\ -4 & -3 & -8 \end{bmatrix} x + \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} u, y = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} x.$ (5)
- Design a state feedback controller for the system $\dot{x} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$, y = (5) [0 1]x to place the eigen values of the closed loop system matrix at $-2 \pm i2$.
 - b) Derive the transfer function of the system $\dot{x} = \begin{bmatrix} -1 & 1 \\ -3 & -2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u, y = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$ [0 1]x when the initial state of the system is zero.
- 14 a) Determine the stability of the system with characteristic equation $z^4 + (6)$ $0.6z^3 + 0.63z^2 - 0.37z + 0.065 = 0$
 - b) Write the structure of state space representation of an nth ordered SISO system (4) in digital domain and specify the dimensions of each matrix.

PART D

Answer any two full questions, each carries 10 marks.

- Identify the stability of limit cycle exhibited by the unity feedback system with (10) forward transfer function $G(s) = \frac{100}{s(s+2)(s+5)}$ when controlled by an amplifier (P-controller) having gain 2 and it saturates when its output reaches ± 2 . Also determine the frequency and approximate amplitude of limit cycle.
- Sketch the phase trajectory for the system $\dot{x_1} = x_2, \dot{x_2} = u, where u = |-x_1|$ (10) starting from (0,1).
- Apply lyapunov stability to determine the stability of the autonomous (10) system $\dot{x} = \begin{bmatrix} 5 & -12 \\ 7 & -14 \end{bmatrix} x$
