Max. Marks: 50

# APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth Semester B.Tech Degree Regular and Supplementary Examination July 2021

### Course Code: EE352 Course name: COMPREHENSIVE EXAM (EE)

Duration: 1Hour

Instructions: (1) Each question carries one mark. No negative marks for wrong answers (2) Total number of questions: 50 (3) All questions are to be answered. Each question will be followed by 4 possible answers of which only ONE is correct. (4) If more than one option is chosen, it will not be considered for valuation. (5) Calculators are not permitted **PART A- COMMON COURSES** The sum of the series  $\sum_{k=1}^{\infty} \frac{1}{(k+1)(k+3)}$  is ..... 1. 0 1 a) 5 c) 1 d) 2 12 The Wronskian corresponding to the differential equation y'' + 25y = 0 is 2. d) 5 a) 4 2 c) b) 3 3. When the projectors are parallel to each other and also perpendicular to the plane, the projection is called Perspective b) Oblique c) Orthographic Isometric a) d) projection projection projection projection The true shape of the section of any solid is required to draw, when the section plane is 4. a) Inclined to HP Parallel to HP & c) Parallel to VP Parallel both b) d) or inclined to perpendicular VP & perpendicular HP & VP VP HP If two equal forces of magnitude P acts at an angle  $\theta$ , the value of their resultant force is 5.  $P \cos \theta/2$ (b)  $P \sin \theta/2$ a) c) 2P sin  $\theta/2$ (d) 2P cos  $\theta/2$ The process of finding out the resultant force is called 6. of forces. Resolution (b) Decomposition c) Composition (d) None of the a) above Pick out the odd one based on the characteristics of a design 7. a) Constraint (b) Function c) Means (d) Maintenance What is the first step in the engineering design process? 8.

|     | a)              | Gathering<br>information<br>about                                                                       | (b<br>an        | ) Coming<br>ideas f<br>product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , up with<br>or a new                                                               | c) R<br>n<br>s          | ecognizing<br>eed for<br>olution to                                                                         | the (d<br>a<br>a | ) None<br>above                                               | of the                                               |
|-----|-----------------|---------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------|------------------------------------------------------|
| 9.  |                 | existing proc                                                                                           | duct<br>develop | ed nations t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to quantifie                                                                        | p<br>d emiss            | roblem<br>ion reduction                                                                                     | n target         | S                                                             |                                                      |
|     | a)              | Montreal<br>Protocol                                                                                    | ı<br>(b         | ) Cartega<br>protoco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | na<br>1                                                                             | c) (                    | TTES                                                                                                        | (d               | ) Kyoto                                                       | Protocol                                             |
| 10. | A pro           | mising direction t                                                                                      | owards s        | sustainable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | developme                                                                           | ent is to               | design syste                                                                                                | ms that          | are                                                           |                                                      |
|     | a)              | flexible and irreversible                                                                               | (b              | ) flexible<br>reversib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e and ole                                                                           | c) ii<br>r              | nflexible and<br>eversible                                                                                  | l (d             | ) inflexi<br>irrever                                          | ible and<br>rsible                                   |
|     |                 |                                                                                                         |                 | PART B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - CORE C                                                                            | OURS                    | ES                                                                                                          |                  |                                                               |                                                      |
| 11. | Accor<br>of pro | rding to linear gra<br>oduct of                                                                         | ph theor        | y, the numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | per of poss                                                                         | ible tree               | es is always o                                                                                              | equal to         | the deter                                                     | rminant                                              |
|     | (a)             | Complete<br>incidence matrix<br>and its transpose                                                       | (b)<br>x        | Reduced<br>incidence and its tran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (c<br>matrix<br>nspose                                                              | c) Cut<br>and<br>tran   | set matrix<br>its<br>spose                                                                                  | (d)              | Tieset<br>and<br>transpos                                     | matrix<br>its<br>e                                   |
| 12. | The p<br>is     | particular current o                                                                                    | obtained        | from the se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | olution of                                                                          | current                 | in sinusoida                                                                                                | l respor         | ise of RL                                                     | circuit                                              |
|     | (a)             | $i_p$ $= \frac{V}{\sqrt{R^2 + (\omega L)^2}}$ $\cos(\omega t + \theta)$ $+ \tan^{-1}\frac{\omega L}{R}$ | (b)             | $i_p = \frac{V}{R^2 + cos(\omega t - cos(\omega$ | $(\alpha \frac{\overline{(\omega L)^2}}{(\omega L)^2} + \theta \frac{\omega L}{R})$ | $i_p = -\frac{1}{v}$    | $\frac{V}{\sqrt{R^2 + (\omega L)^2}}$<br>s( $\omega t - \theta$<br>tan <sup>-1</sup> $\frac{\omega L}{R}$ ) | (d)              | $i_p = \frac{1}{\sqrt{R^2 - 1}} \cos(\omega t)$ $- \tan^{-1}$ | $\frac{V}{F(\omega L)^2}$ $t = \theta$ $\frac{1}{R}$ |
| 13. |                 |                                                                                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                     | 3.6 H<br>) 1 H<br>1.4 H |                                                                                                             |                  |                                                               |                                                      |
|     |                 |                                                                                                         |                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     |                         |                                                                                                             |                  |                                                               |                                                      |
|     | The v           | alue of equivalent                                                                                      | t inducta       | nce $L_{eq}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                     |                         |                                                                                                             |                  |                                                               |                                                      |
|     | (a)             | 4H                                                                                                      | (b)             | 6H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0                                                                                  | c) 7H                   |                                                                                                             | (d)              | 0H                                                            |                                                      |



In the circuit given find the value of R to transfer maximum power to the load

(a) zero (b)  $3\Omega$  (c)  $6\Omega$  (d) infinity

15. In figure, the value of the source voltage is



16.

The circuit shown in the figure is in steady state, when the switch is closed at t = 0. Assuming that the inductance is ideal, the current through the inductor at  $t = 0^+$  equals



17. In the single stage transistor amplifier circuit shown in fig.4, the capacitor  $C_E$  is removed then the ac small signal mid-band voltage gain of the amplifier



- 18. An op-amp having a slew rate of  $125.6 \text{ V/}\mu\text{s}$ , is connected in a voltage follower configuration. If the, maximum amplitude of the input sinusoid is 20V, then the maximum frequency at which the slew rate limited distortion would set in at the output is
  - (a) 1 MHz (b) 6.28 MHz (c) 1 kHz (d) 6.28 kHz
- 19. The phase difference between the output and input voltages of a CE amplifier without feedback is
  - (a)  $0^0$  (b)  $90^0$  (c)  $180^0$  (d)  $120^0$
- 20. The circuit of an astable multivibrator using 555 timer IC is shown in fig.7. The value of capacitor C=10 nF. The values of resistors  $R_A$  and  $R_B$  for a frequency of 10 kHz and a duty cycle of 0.75 for the output voltage waveform are



- (a)  $R_A = 3.62 \text{ k}\Omega$ ,  $R_B =$  (b)  $R_A = 7.25 \text{ k}\Omega$ ,  $R_B$  (c)  $R_A = 3.62 \text{ k}\Omega$ , (d)  $R_A = 7.25 \text{ k}\Omega$ ,  $R_B = 7.25 \text{ k}\Omega$ = 3.62 k $\Omega$  = 3.62 k $\Omega$  = 7.25 k $\Omega$  = 7.25 k $\Omega$
- 21. A triangular input with 1 V peak is applied to a Schmitt trigger. What will be the output waveform if the upper and lower trigger points are 0.25V and -0.25V respectively

(a) Sine wave (b) Pulse waveform (c) Saw tooth (d) Square waveform waveform

22. Frequency of oscillation and the value of feedback resistor  $R_F$  for the RC phase shift oscillator using op-amp with RC network having the values R= 3.3 k $\Omega$  and C= 0.05 $\mu$ F.

| (a) | f = 39.4 Hz, | (b) | f = 39.4 Hz, | (c) | f = 394 Hz, | (d) | f = 394 Hz, |
|-----|--------------|-----|--------------|-----|-------------|-----|-------------|
|     | 100 kΩ       |     | 10 kΩ        |     | 100 kΩ      |     | 10 kΩ       |

23. The base of the number system for the addition operation 24+14=41 to be true is

- (a) 5 (b) 6 (c) 7 (d) 8
- 24. The simplified form of the Boolean expression, Y=(A'BC+D)(A'D+B'C') can be written as

(a) 
$$(A'D+B'C'D)$$
 (b)  $(A'D+BC'D)$  (c)  $(A'D'+BCD')$  (d)  $(A'+D)(B'+C'+D)$ 

25. For a JK flip flop, its J input is tied to its own complemented output and its K input is connected to its own Q output. If the flip flop is fed with a clock of frequency 1MHz, its Q output frequency will be

|     | (a)                                                                                                                                                                                                                                                    | 10 MHz                                          | (b)           | 2MHz                                             | (c)      | 0.5MHz                                                        | (d)      | 1MHz                                           |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------|--------------------------------------------------|----------|---------------------------------------------------------------|----------|------------------------------------------------|--|--|--|
| 26. | A memory used for storing variable quantities is                                                                                                                                                                                                       |                                                 |               |                                                  |          |                                                               |          |                                                |  |  |  |
|     | (a)                                                                                                                                                                                                                                                    | EPROM                                           | (b)           | PROM                                             | (c)      | RAM                                                           | (d)      | ROM                                            |  |  |  |
| 27. | The                                                                                                                                                                                                                                                    | The speed of conversion is maximum in:          |               |                                                  |          |                                                               |          |                                                |  |  |  |
|     | (a)                                                                                                                                                                                                                                                    | Dual slope ADC                                  | (b)           | Flash ADC                                        | (c)      | Single slope<br>ADC                                           | (d)      | Successive<br>approximation<br>ADC             |  |  |  |
| 28. | A DAC with a full scale output voltage of 3.5V has a resolution close to 14mV. Its bit size is:                                                                                                                                                        |                                                 |               |                                                  |          |                                                               |          |                                                |  |  |  |
|     | (a)                                                                                                                                                                                                                                                    | 16                                              | (b)           | 32                                               | (c)      | 4                                                             | (d)      | 8                                              |  |  |  |
| 29. | What<br>throu                                                                                                                                                                                                                                          | t is the total ampere t<br>igh conductors (P=4) | turns/j<br>?  | oole (in AT/pole) i                              | f 600 l  | ap wound conduc                                               | tors ca  | rry 120A current                               |  |  |  |
|     | (a)                                                                                                                                                                                                                                                    | 18000                                           | (b)           | 9000                                             | (c)      | 4500                                                          | (d)      | 13500                                          |  |  |  |
| 30. | Which generated                                                                                                                                                                                                                                        | ch of the following rator?                      | loss          | is likely to have                                | e highe  | est proportion at                                             | rated    | load of the DC                                 |  |  |  |
|     | (a)                                                                                                                                                                                                                                                    | Hysteresis loss                                 | (b)           | Field copper<br>loss                             | (c)      | Armature<br>copper loss                                       | (d)      | Eddy current<br>loss                           |  |  |  |
| 31. | A starter is required for a 220-V shunt motor. The maximum allowable current is 55 A and the minimum current is about 35 A. The armature resistance of the motor is 0.4 $\Omega$ . What will be the number of sections of starter resistance required? |                                                 |               |                                                  |          |                                                               |          |                                                |  |  |  |
|     | (a)                                                                                                                                                                                                                                                    | 4                                               | (b)           | 5                                                | (c)      | 6                                                             | (d)      | 8                                              |  |  |  |
| 32. | What will happen if field current of one of the two machines in Hopkinson's test is increased?                                                                                                                                                         |                                                 |               |                                                  |          |                                                               |          |                                                |  |  |  |
|     | (a)                                                                                                                                                                                                                                                    | The machine to which field                      | (b)           | The machine to which field                       | (c)      | Both machines act as                                          | (d)      | Both machines act as motor                     |  |  |  |
|     |                                                                                                                                                                                                                                                        | current is<br>increased will act<br>as motor    |               | current is<br>increased will<br>act as generator |          | generator and<br>supplies<br>current to the                   |          | drawing current<br>from dc mains               |  |  |  |
| 33. | Wha                                                                                                                                                                                                                                                    | t will happen if excit                          | ation         | of DC shunt motor                                | r is cha | nged?                                                         |          |                                                |  |  |  |
|     | (a)                                                                                                                                                                                                                                                    | Torque will<br>remain constant                  | (b)           | Torque and<br>power both will<br>change          | (c)      | Torque will<br>change but<br>power will<br>remain<br>constant | (d)      | Torque, power<br>and speed, all<br>will change |  |  |  |
| 34. | KVA                                                                                                                                                                                                                                                    | rating of a transform                           | ner is        | decided from                                     |          |                                                               |          |                                                |  |  |  |
|     | (a)                                                                                                                                                                                                                                                    | Core loss at no<br>load                         | (b)           | Copper loss at full load                         | c)       | Core loss and<br>Copper loss                                  | (d)      | Frictional Loss                                |  |  |  |
| 35. | When                                                                                                                                                                                                                                                   | n bundle conductors<br>citance will respective  | are v<br>velv | used in place of s                               | single   | conductors, the e                                             | ffective | e inductance and                               |  |  |  |

|     | (a)                                                                                                                                                                       | Increase<br>decrease                                         | and               | (b)            | Decrease increase                                    | and                   | (c)          | Decrease a<br>remain<br>unaffected                                      | and                    | (d)                       | Remains<br>unaffected<br>increase              | d and                        |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------|----------------|------------------------------------------------------|-----------------------|--------------|-------------------------------------------------------------------------|------------------------|---------------------------|------------------------------------------------|------------------------------|
| 36. | 36. Corona losses are minimized when                                                                                                                                      |                                                              |                   |                |                                                      |                       |              |                                                                         |                        |                           |                                                |                              |
| 37. | (a)<br>A 66                                                                                                                                                               | Reduced<br>conductor rad                                     | lius<br>as stri   | (b)<br>ing ins | Smooth<br>conductors<br>used<br>sulator having       | are<br>g five         | (c)<br>discs | Increased<br>frequency<br>and the earth                                 | to di                  | (d)<br>isc car            | Sharp<br>are provi-<br>the line<br>pacitance r | points<br>ded in<br>ratio is |
|     | 0.1.7                                                                                                                                                                     | The string effic                                             | eiency            | will b         | e                                                    |                       |              |                                                                         |                        | 1                         |                                                |                              |
|     | (a)                                                                                                                                                                       | 89 %                                                         |                   | (b)            | 75 %                                                 |                       | (c)          | 67 %                                                                    |                        | (d)                       | 56%                                            |                              |
| 38. | The                                                                                                                                                                       | insulation resis                                             | tance             | of a 1         | 0 km long ca                                         | ble is 1              | MΩ.          | Its resistance                                                          | for f                  | 50 km                     | length wil                                     | 1 be;                        |
|     | (a)                                                                                                                                                                       | 1 MΩ                                                         |                   | (b)            | 5 ΜΩ                                                 |                       | (c)          | 0.2 ΜΩ                                                                  |                        | (d)                       | None of above                                  | f the                        |
| 39. | Whie                                                                                                                                                                      | ch of the follow                                             | ving p            | ower s         | system distrib                                       | oution                | gives        | the greater rel                                                         | liabil                 | ity                       |                                                |                              |
|     | (a)                                                                                                                                                                       | Radial system<br>the distribution                            | n of<br>on        | (b)            | Ring system<br>the distribut                         | m of<br>tion          | (c)          | D.C. three w<br>system of<br>distribution                               | vire<br>the            | (d)                       | A.C.<br>phase fou<br>system                    | three<br>Ir wire             |
| 40. | A Bı                                                                                                                                                                      | chholz relay is                                              | s used            | for            |                                                      |                       |              |                                                                         |                        |                           |                                                |                              |
|     | (a)                                                                                                                                                                       | Protection<br>transformers<br>against<br>internal faults     | of<br>all         | (b)            | Protection<br>transformer<br>against<br>external fau | of<br>s<br>all<br>lts | (c)          | Protection<br>transformers<br>against be<br>internal a<br>external faul | of<br>oth<br>and<br>ts | (d)                       | Protection<br>transmiss<br>lines               | 1 of<br>ion                  |
| 41. | Dista                                                                                                                                                                     | ance relays are                                              | gener             | ally           |                                                      |                       |              |                                                                         |                        |                           |                                                |                              |
|     | (a)                                                                                                                                                                       | MHO relays                                                   |                   | (b)            | Reactance r                                          | elays                 | (c)          | Impedance<br>relays                                                     |                        | (d)                       | Split –<br>relays                              | phase                        |
| 42. | In To                                                                                                                                                                     | orque-Current a                                              | analog            | gy, the        | rotational ind                                       | ertia (J              | ) is ar      | alogous to                                                              |                        |                           |                                                |                              |
|     | (a)                                                                                                                                                                       | Inductance (L                                                | .)                | (b)            | 1/L                                                  |                       | (c)          | Resistance (I                                                           | R)                     | (d)                       | Capacitar<br>(C)                               | ice                          |
| 43. | 3. For an armature controlled dc servo motor(with Eb: back emf, w: angular velocity, N: speed in rpm, θ: displacement), the torque constant (KT) is approximately same as |                                                              |                   |                |                                                      |                       |              |                                                                         |                        |                           |                                                |                              |
| 44. | (a)<br>For<br>damp                                                                                                                                                        | $\Delta Eb/\Delta N$<br>a second orde<br>bing factor $\xi$ w | r syst<br>vill be | (b)<br>tem, t  | $\Delta Eb/\Delta w$<br>he damped f                  | frequer               | (c)<br>ncy w | $\Delta Eb/\Delta Ia$<br>$r_d = 4 rad/s, v_d$                           | vith                   | (d)<br>w <sub>n</sub> = 5 | $d^2\theta/dt^2$ rad/s, the                    | en the                       |
| 45. | (a)<br>For a<br>will 1                                                                                                                                                    | 0.6<br>a second order :                                      | systen            | (b)<br>n one j | 0.8<br>pole is at s=                                 | (-2 + j               | (c)<br>1.4), | 0.9<br>the settling tin                                                 | me fo                  | (d)<br>or a 2%            | 1.25<br>6 tolerance                            | band                         |
|     | (-)                                                                                                                                                                       | 1                                                            |                   | (1-)           | 2 ~                                                  |                       | (-)          | 1 ~                                                                     |                        | <b>(L)</b>                | Q ~                                            |                              |
|     | (a)                                                                                                                                                                       | 1 8                                                          |                   | (0)            | ∠ 8                                                  |                       | (0)          | 45                                                                      |                        | (u)                       | 0 8                                            |                              |
|     |                                                                                                                                                                           |                                                              |                   |                |                                                      |                       |              |                                                                         |                        |                           |                                                |                              |

46. The type and stability of the closed loop transfer function with G(s)=1 / [s(s+1)] and H(s)=1 / s are

(a) 1, unstable (b) 2, stable (c) 0, unstable (d) 0, stable 47. For the closed loop system with  $G(s)H(s) = \frac{k}{(s+1)(s+2)}$ , the magnitude of k for repeated roots is

(a) 0.25 (b) 0.5 (c) 1 (d) 2

48. The root locus of the feedback control system having the characteristic equation s<sup>2</sup>+6Ks+2s+5=0 where K>0, enters into the real axis at

(a) s = -1 (b)  $s = -\sqrt{5}$  (c) s = -5 (d)  $s = \sqrt{5}$ 

49. The number of imaginary axis roots for the system with characteristic equation  $s^4 + 1 = 0$  is

(a) 0 b) 2 c) 3 d) 4

50. The introduction of a transportation lag to a given system causes

| a) | Increase in gain | b) | Decrease in  | c) | Increase in  | d) | Decrease in |
|----|------------------|----|--------------|----|--------------|----|-------------|
|    | margin           |    | phase margin |    | phase margin |    | gain margin |

\*\*\*\*