Reg No.:_____

Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third semester B.Tech degree examinations (S) September 2020

Course Code: EC207 Course Name: LOGIC CIRCUIT DESIGN (EC, AE)

Μ	ax. N	Aarks: 100		Duration: 3 Hours	
			PART A		
			Answer any two full questions, each carries 15 marks.	Marks	
1	a)	i. Cor	nvert the hexadecimal number 2FC3 into binary and decimal.	(5)	
		ii. Wı	rite down the Octal equivalent of hexadecimal number 3A2E.		
		iii. Su	btract binary number 10110 from 10001001		
	b)	Write dow	in the 1's and 2's complement of the following numbers.	(6)	
		i.	-4		
		ii.	+253		
		iii.	- 181		
	c)	Determine	the Hamming code for the information 1011, with even parity.	(4)	
2	a)	Using the Boolean theorems simplify the following expressions.		(8)	
		(i)	$Y = \overline{A}C(\overline{A}BD) + \overline{A}B\overline{C}\overline{D} + A\overline{B}C$		
		(ii)	$Y = A\overline{B}C + B + B\overline{D} + AB\overline{D} + \overline{A}C$		
	b)	Using K m	hap simplify the SOP function, and realize it using only NAND	gates. (7)	
		f(a,b,c) =	Σm (0,2,3,4,5,6)		
3	a)	Realize a 2 bit comparator.			
	b)	Implement	t the following function using an 8 X 1 MUX.	(8)	
		F(A,B,C,D	$D) = \Sigma m (1,3,4,11,12,13,14,15)$		
			PART B		
			Answer any two full questions, each carries 15 marks.		
4	a)	List any fo	our performance ratings of TTL family.	(4)	
	b)	Draw the c	circuit of a CMOS inverter and explain its working	(4)	
	c)	Explain the	e working of a master slave JK flipflop, with the help of circuit	diagram. (7)	
5	a)	Explain the	e working of a 3 bit UP/DOWN counter.	(7)	
	b)	Implement	t the following two Boolean functions with a PLA:	(8)	
		F1(A,1	B,C) = Σm (0,1,2,4)		
		F2(A,	$B,C) = \Sigma m (0,5,6,7)$		

00000EC207121904

- 6 a) Describe the working of a 3 bit TTL NAND gate in totem pole configuration. (8)
 - b) Convert a D flipflop into a JK flipflop, showing all the steps. (7)

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Explain the working of a 4 bit PISO register. Draw the circuit and timing diagram. (10)
 - b) Draw the Moore sequential model. How it differs from Mealy machine. (5)
 - c) For the Mealy Model State table is given below draw the state diagram. (5)

PS		NS				O/P	
		X=0		X=1		X=0	X=1
Y1	Y2	Y1	Y2	Y1	Y2	Z	Z
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

- 8 a) Explain the working of a 4 bit twisted ring counter, with the help of timing (10) diagrams.
 - b) For the state tables of the machines given below, find the equivalence partition (10) and a corresponding reduced machine.

	NS,Z		
PS	X=0	X=1	
Α	B,1	H,1	
В	F,1	D,1	
С	D,0	E,1	
D	C,1	F,1	
E	D,1	C,1	
F	C,1	C,1	
G	C,1	D,1	
Н	С,0	A,1	

00000EC207121904

9 a) Draw the state diagram, state transition table and state equation using D flip flop (10) for the given state table.

PS	NS		O/P	
	X=0	X=1	X=0	X=1
A(00)	Α	В	0	0
B(01)	С	В	0	0
C(10)	Α	D	0	0
D(11)	С	В	1	0

b) Design a synchronous counter using T flipflop to count the following sequence. (10)
0-3-1-4-6-0
