Reg No.:	Name:	

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fourth semester B.Tech examinations (S), September 2020

Course Code: EC206

Course Name: COMPUTER ORGANISATION (EC)

Max. Marks: 100 **Duration: 3 Hours PART A** Marks Answer any two full questions, each carries 15 marks Draw the block diagram of a 16-bit ripple carry adder using full adders. Calculate (7) the delay of a 32-bit ripple carry adder. Assume a full adder delay is 200ps. b) Express the following base 10 numbers in 16-bit fixed-point two's complement (8) format with eight integer bits and eight fraction bits. Express in IEEE 754 singleprecision floating-point format also. Express your answer in hexadecimal. (a) -20.5(b) 24.25 2 a) Explain any two assembly instruction formats in MIPS with examples. (6) Write the operation performed in MIPS processor when it executes the following (9) instructions (a) add \$t0, \$s4, \$s5 (b) lw \$t2, 32(\$0) (c) sw \$s1, 4(\$t1)3 a) Draw the symbol and implementation of a 4 x 4 multiplier. (7) b) Discuss about operands and registers of MIPS processor. Write the use of \$0, (8) \$gp, \$sp and \$t8. PART B Answer any two full questions, each carries 15 marks a) Explain five addressing modes of MIPS with example. (15)5 a) Draw the datapath for single cycle processor for *sw* instruction. (9) b) List the characteristics of single-cycle and multi cycle microarchitectures. (6) How does a multicycle processor address the weakness of single-cycle 6 a) (7)

Explain the steps involved in executing a high level language program. Draw the

(8)

processor?

flow chart.

02000EC206052004

PART C Answer any two full questions, each carries 20 marks

7 a)		Explain any two modes of data transfer between the processor/memory and I/O	(6)
		devices in a computer system.	
	b)	Draw the internal organization of a DRAM cell and explain the read and write	(6)
		operation.	
	c)	Illustrate virtual address to physical address translation using page table.	(8)
8	a)	Define miss rate and average memory access time.	(6)
	b)	Draw the internal organization of a SRAM cell and explain the read and write	(8)
		operation.	
	c)	Compute the size of a 4096-word x 32-bit memory array. Also find the width of	(6)
		address and data bus.	
9	a)	Describe temporal locality and spatial locality with respect to cache memory.	(6)
	b)	Illustrate how data is found in a C=8 word, 2-way set associative cache	(10)
	c)	Draw the internal organization of a 4 x 3 memory array.	(4)
