Reg No.:_____

Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth semester B.Tech degree examinations (S), September 2020

Course Code: EC306

Course Name: Antenna & Wave Propagation

M	Max. Marks: 100 Duration: 3			
PART A				
		Answer any two full questions, each carries 15 marks	Marks	
1	a)	With a neat diagram of the experimental setup, explain how radiation pattern	(10)	
		measurement of anantenna is carried out.		
	b)	Explain antenna field zones	(5)	
2	a)	Derive expressions for the Far Field components and Radiation Resistance of a	(12)	
		short dipole antenna.		
	b)	Calculate the effective aperture of a short dipole antenna operating at 100 MHz.	(3)	
3	a)	State and Prove Reciprocity Theorem.	(7)	
	b)	The radiation intensity of the major lobe of an antenna is represented by	(8)	
		$U = A_0 \cos\theta, \ 0 < \theta < \frac{\pi}{2}, \ 0 < \Phi < 2\pi$		
		Find the maximum directivity?		
		PART B		
	Answer any two full questions, each carries 15 marks			
4	a)	Explain the working of a rhombic antenna and its applications.	(8)	
	b)	Explain the working of V antenna.	(7)	
5	a)	Design a Dolph –Tschebyscheff array of 10 elements with spacing of $d = \lambda/2$	(15)	
		between the elements and major to minor lobe ratio is 26 dB.		
6	a)	Derive expression for directions of pattern maxima, pattern minima and HPBW	(10)	
		for a endfire array of 'n' elements.		
	b)	With neat diagrams explain the principle of operation of a Horn antenna.	(5)	

PART C

Answer any two full questions, each carries 20 marks

- 7 a) With detailed diagrams explain the structure and modes of operation of helical (12) antenna.
 - b) Explain duct propagation. (8)
- 8 a) Define Critical frequency and Maximum usable frequency. (5)

03000EC306052001

- b) With the help of neat diagrams explain the principle of operation of Log (10) PeriodicAntenna.
- c) Explain Tropospheric scatter propagation. (5)
- 9 a) Design a rectangular microstrip antenna using a dielectric substrate with (15) dielectric constant of 2.2, h = 0.1588 cm so as to resonate at 10 GHz.
 - b) What is fading. Explain the diversity techniques adopted in wave propagation. (5)
