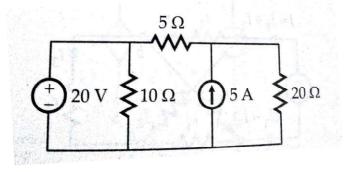
00000EC201121905ame:_

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

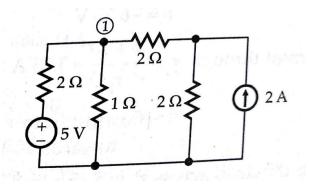
Third Semester B.Tech Degree (S,FE) Examination December 2020

Course Code: EC201 Course Name: NETWORK THEORY

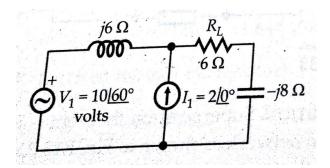

Max. Marks: 100

Duration: 3 Hours

PART A


Answer any two full questions, each carries 15 marks. Marks

- 1 a) State and explain Thevenin's theorem and Norton's theorem. (4)
 - b) Find the power loss across 5Ω for the given network by using mesh analysis. (5)


c) Find the current in 1Ω by nodal analysis.

(6)

2 a) Using super position theorem, find the current through 6Ω for the given (8) network.

00000EC201121905

- Explain Complete incidence matrix and fundamental cutest matrix with an b) (7)example.
- State and prove Initial value theorem. 3 a) (3)
 - b) Find inverse Laplace transform of F(s) =50 (4)

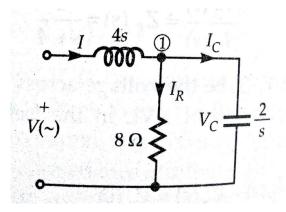
(s+1)(s+5)

(c) Find the Laplace Transform of the following (8) (i)

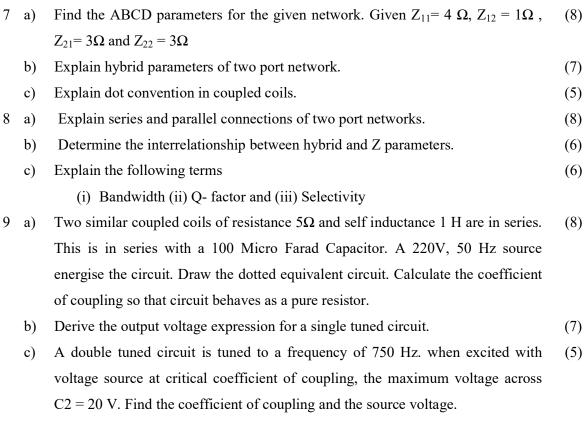
$\cos(\omega t+\Theta)$ and (ii) $(1+2t e^{-6t})^3$

PART B

Answer any two full questions, each carries 15 marks.


Solve the differential equation using Laplace Transform Y'' + 2y' + 3y = 0(8) 4 a) Given y(0) = 1 and y'(0) = 0

b) Given I(s) =
$$\frac{3 s}{(s+1)(s+3)}$$
 (7)


Plot Pole zero plot and hence obtain i(t) from pole zero plot.

- Write any five properties of driving point admiittance functions. 5 a) (5)
 - A series RLC circuit with R= 300Ω L= 1 H and C= 100 Micro Farad has a (6) b) constant voltage of 50 V applied at t=0. Find maximum value of current. Assume zero initial condition.
 - A series RL circuit with R= 200 Ω and L= 20 H is connected to a 250 V dc (4) c) source. Find the transient current.
- Derive transient current and voltage responses of RL and RC Circuits energised 6 a) (10)by a dc voltage source of V volts.
 - Find Voltage Transfer function for the given network. b) (5)

00000EC201121905

PART C Answer any two full questions, each carries 20 marks.

Given $Q_1=6$, $Q_2=10$ $R_1=10\Omega$ and $R_2=90\Omega$
