Reg No.:__

Name:___

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Regular and Supplementary Examination December 2020

Course Code: EC360 Course Name: SOFT COMPUTING

Max. Marks: 100

Duration: 3 Hours

(8)

(3)

PART A

Answer any two full questions, each carries 15 marks. Marks

- 1 a) Explain the terms Fuzzy Computing and Neural Computing. Mention some of (7) the areas where you can apply them.
 - b) For the fuzzy set A = 0.1/2 + 0.4/3 + 0.5/4 + 0.6/5 + 1/7 + 1/8 + 0.5/9, find (8) i) Height of A ii) Support of A. Also express A using resolution principle.
- 2 a) Consider two fuzzy sets A and B as shown

$$\mu_A(x) = \begin{cases} (x-1)/3 & 1 \le x \le 4\\ (7-x)/3 & 4 < x \le 7 \end{cases}, \qquad \mu_B(x) = \begin{cases} (x-3)/3 & 3 \le x \le 6\\ (9-x)/3 & 6 < x \le 9 \end{cases}$$

Determine $A \cup B$ and $A \cap B$

- b) What are Fuzzy Relations? Draw and explain the bipartite and direct graph of (7) fuzzy relation.
- 3 a) What are Type-2 fuzzy sets?
 - b) With an example prove Demorgan's Law. (5)
 - c) Given a fuzzy set A in X and a fuzzy relation R in X x Y as follows, (7) $A = 0.2/x_1 + 0.8/x_2 + 1/x_3$

$$\begin{array}{rcl} y_1 & y_2 & y_3 \\ x_1 \begin{pmatrix} 0.7 & 1 & 0.4 \\ 0.5 & 0.9 & 0.6 \\ x_3 \begin{pmatrix} 0.2 & 0.6 & 0.3 \end{pmatrix} \end{array}$$
, Find $B = A \circ R$ using max-min composition

PART B

Answer any two full questions, each carries 15 marks.

4	a)	What are Linguistic variables and Hedges?				
	1 \		1		1 .	

b) With the help of a block diagram, explain a fuzzy rule based system. (9)

06000EC360122003

5	a)) For a neural network the inputs given as $[x_1, x_2, x_3] = [0.7, 0.8, 0.3]$ and the						
		weights are $[w_1, w_2, w_3] = [0.2, 0.4, -0.2]$ with bias 0.5. Draw the network and						
		find the output for (i) sigmoidal and (ii) hyperbolic tangent activation functions.						
	b)	Differentiate supervised learning with unsupervised learning.	(7)					
6	a)	Draw and explain the basic structure of a biological neural network	(7)					
	b)	Implement McCulloh Pits neuron for (i) NAND (ii) XOR functions.	(8)					
PART C								
	Answer any two full questions, each carries 20 marks.							
7	a)	What is linear separability? Explain with an example.	(4)					
	b)	With a flowchart, explain the learning algorithm of perceptron network.	(10)					
	c)	Illustrate perceptron network for OR and NAND functions	(6)					
8	a)	Explain backpropagation algorithm for perceptron learning.	(10)					
	b)	What is the significance of learning rate and momentum coefficient?	(5)					
	c)	Implement XOR function using perceptron network(assume binary input).	(5)					
9	a)	Explain the principle of a genetic algorithm.	(10)					
	b)	Explain various selection methods?	(5)					
	c)	Describe the concept of Mutation in genetic algorithm.	(5)					
