Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Seventh Semester B.Tech Degree Examination (Regular and Supplementary), December 2020

Course Code: EC401

Course Name: INFORMATION THEORY & CODING

Max. Marks: 100

Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks. Marks

- 1 a) Find the self information of two messages with respective probabilities 0.1 and (3) 0.9. Comment on the results.
 - b) Prove that mutual information of a channel is symmetric and always non- (5) negative.
 - c) Joint probability matrix of a discrete channel is given below:

$$P(X,Y) = \begin{bmatrix} 0.3 & 0.2 & 0.1\\ 0.1 & 0.1 & 0.2 \end{bmatrix}$$

Determine the different entropies and verify their relationships.

- 2 a) State and prove noiseless coding theorem.
 - b) An analog signal is band limited to 3.4 kHz and is sampled at Nyquist rate. The (4) samples are quantized into 4 levels. The quantization levels are assumed to be independent and occur with probabilities $p_1 = \frac{1}{2}$; $p_2 = \frac{1}{4}$; $p_3 = p_4 = \frac{1}{8}$. Find the information rate of the source.
 - c) Find binary Huffman code for random variable $S = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8\}$ (6) with probabilities (0.4, 0.25, 0.15, 0.06, 0.05, 0.04, 0.03, 0.02}. Move the combined symbol as high as possible. Find average code word length and efficiency.
- 3 a) Consider a message ensemble $S = \{s_1, s_2, s_3, s_4, s_5, s_6\}$ with probabilities P = (5) $\{1/3, 1/4, 1/8, 1/8, 1/12, 1/12\}$. Construct a binary code and determine its efficiency using Shannon – Fano coding procedure.
 - b) Explain binary symmetric and binary erasure channels. Derive the expression for (10) their channel capacities.

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) What are the properties to be satisfied by a linear block code? Illustrate with an (5) example.
 - b) What is the capacity of a channel of infinite bandwidth? (5)
 - c) Define the terms Hamming weight, Hamming distance and minimum Hamming (5) distance with suitable example.
- 5 a) Explain band width SNR trade off in a Gaussian channel. (5)

(5)

(7)

00000EC401121902

	b)	For a systematic $(7,4)$ linear block code, the parity matrix P is given by	(10)
		$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$	
		$P = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix}$	
		$\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$	
		(i) Find all possible valid code vectors. (ii) Draw the encoder circuit. (iii) Draw	
		the syndrome calculation circuit.	
6	a)	If V is a valid code vector, prove that $VH^T = 0$, where H is parity check matrix.	(5)
	b)	State and prove Shannon – Hartley theorem.	(10)
		PART C	
		Answer any two full questions, each carries 20 marks.	
7	a)	Draw a (2,1,3) encoder with impulse sequences $g^{(1)} = 1011$ and $g^{(2)} = 1111$.	(12)
		Find the generator matrix for the given encoder. Also find the code vector for the message 11010 by time and frequency domain approaches.	
	b)	What is a BCH code? Find the generator polynomial for single, double and triple	(8)
		error correcting BCH code of block length, $n = 15$.	
8	a)	What are the properties to be satisfied by a cyclic code?	(5)
	b)	For a non-systematic rate $\frac{1}{2}$ code given by $g^{(1)} = 111$ and $g^{(2)} = 101$. Draw the	(10)
		graph, trellis and state diagram.	
	c)	What are the features of Reed-Solomon codes?	(5)
9	a)	Explain how systematic encoding is achieved in cyclic codes. For a systematic	(10)
		(7, 4) cyclic code, find the code vector corresponding to message $u(x) = 1 + x^3$,	
	1 \	generated by $g(x) = 1 + x + x^3$.	(10)
	b)	For a convolutional encoder with generator sequences $g^{(1)} = 100$ and $g^{(2)} = 101$,	(10)
		if the received code word is 00100000010000, find the transmitted code word	
		using Viterbi algorithm.	
