Reg No.:_____

Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Seventh Semester B.Tech Degree Examination (Regular and Supplementary), December 2020

Course Code: EC467 Course Name: PATTERN RECOGNITION

Max. Marks: 100

Duration: 3 Hours

PART A atio

PART A				
		Answer any two full questions, each carries 15 marks.	Marks	
1	a)	Explain the various applications of pattern recognition systems.	(5)	
	b)	Obtain the discriminant function for Bayes classifier if the feature vector	(10)	
		distribution is Gaussian with different means and a fixed diagonal covariance		
		matrix.		
2	a)	Explain the Bayesian parameter estimation technique.	(8)	
	b)	Describe the significance of Gaussian mixture models in classifier design.	(7)	
3	a)	For a two category Bayes classifier, the loss function is given by $\lambda_{11}=0.1$, $\lambda_{21}=$	(5)	
		1, $\lambda_{12}=1$, $\lambda_{22}=0.2$. The categories are equally likely. Obtain the decision rule.		
	b)	Explain Fisher discriminant analysis for dimensionality reduction.	(10)	
		PART B		
Answer any two full questions, each carries 15 marks.				
4	a)	Explain K Nearest Neighbour method for density estimation.	(10)	
	b)	Explain the perceptron model for classification.	(5)	
5	a)	Explain support vector machines and how it achieves maximum margin	(10)	
		classification.		
	b)	Define overfitting and its drawback.	(5)	
6	a)	Define the various impurity measures used in test selection while constructing a	(8)	
		decision tree.		
	b)	Explain gradient descent algorithm and state perceptron convergence theorem.	(7)	
		PART C		
_	,	Answer any two full questions, each carries 20 marks.		
7	a)	What is bagging approach in ensemble classifier?	(7)	
	b)	Explain the classification capabilities of a two layer perceptron with necessary	(8)	

illustrations.

00000EC467121903

	c)	Draw and explain the structure of a multilayer feed forward network.	(5)
8	a)	Explain the back propagation algorithm and its network architecture.	(10)
	b)	List and describe the different types of clustering.	(5)
	c)	What is a dendogram? How is it useful for clustering?	(5)
9	a)	Explain the K-means clustering algorithm.	(10)
	b)	Define the problem of cluster validity.	(5)
	c)	Write the major steps involved in agglomerative hierarchical clustering.	(5)
