Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Seventh Semester B.Tech Degree Supplementary Examination August 2021

Course Code: EC403 Course Name: MICROWAVE & RADAR ENGINEERING

Max. Marks: 100

Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks. Marks

- 1 a) Explain the significance of re-entrant cavities in microwave tubes. What are the (4) different types commonly used re-entrant cavities?
 - b) Determine the length (d) of an air-filled rectangular cavity operating in TE₁₀₁ (3) mode with resonant frequency fr = 20 GHz. The height b = 2 cm and width a = 1 cm
 - c) With the help of Applegate diagram describe the operation of a reflex klystron (8) oscillator.
- 2 a) With the diagram of a two cavity Klystron amplifier deduce the expression for (8) optimum distance at which the bunching occurs.
 - b) A pulsed cylindrical magnetron is operated with the following parameters: (7) Anode voltage: $V_o = 25$ kV, Beam current: $I_o = 25$ A, Magnetic flux density: $B_o = 0.34$ Wb/m², Radius of cathode cylinder: a = 5 cm, Radius of anode cylinder: b

= 10 cm

Compute:

- a. The cyclotron angular frequency
- b. The cut-off voltage for a fixed B_o
- c. The cut-off magnetic flux density for a fixed $V_{\rm o}$
- 3 a) Explain with figure the power output and frequency characteristics of reflex (7) klystron.
 - b) 2-cavity klystron operates at 4 GHz with V0 = 1 kV, $I_0 = 22$ mA, d = 1mm, L = (8) 3 cm. If the dc beam conductance and catcher cavity total equivalent conductance are 0.25 x 10⁻⁴ mhos and 0.3x 10⁻⁴ mhos respectively.

Find out

(a) Beam coupling coefficient

10000EC403122002

- (b) Dc transit angle in the drift space
- (c) Input cavity voltage V_1 for max V_2
- (d) Voltage gain and efficiency (neglecting beam loading)

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Explain the different techniques used for measuring frequency at microwave (8) range.
 - b) Discuss the constructional features of magic tees and derive its S Matrix (7)
- 5 a) With neat diagram describe the constructional features and working principle of (7) a Travelling Wave Tube (TWT)
 - b) With a schematic diagram describe the operation of a four-port circulator. Obtain (8) the simplified S matrix of a perfectly matched, lossless four port circulator.
- 6 a) Explain the wave modes of Helix TWT. Prove that there are four waves existing (8) in a TWT
 - b) Explain the operation of hybrid rings. Derive its S matrix. How it differs from (7) magic tee?

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) With necessary figures explain the physical structures of microwave bipolar (10) junction transistors.
 - b) Draw the block diagram of non-coherent MTI radar and explain the function of (10) each block in detail.
- 8 a) Explain the tunnel diode characteristics with aid of energy band diagram. (10)
 - b) Explain the basic principles of radar system. Derive the Radar range equation. (10)Explain the factors that affects the maximum range of a radar.
- 9 a) Explain Ridley–Watkins–Hilsum theory with the help of two valley model. (10)
 - b) Explain FM-CW Radar using sideband super heterodyne receiver. (10)
