Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fourth Semester B.Tech (Hons) Degree Examination July 2021 (2019 admission)

Course Code: ECT292 Course Name: NANOELECTRONICS

Max. Marks: 100

Duration: 3 Hours

(8)

PART A

	(Answer all questions; each question carries 3 marks)	Marks
1	Explain any two characteristic lengths associated with a mesoscopic system	(3)
2	Explain the features of parabolic quantum wells	(3)
3	DC sputtering cannot be used for coating non conducting materials. Justify	(3)
4	Illustrate effusion cells used in molecular beam epitaxy.	(3)
5	Compare electron microscope and optical microscope.	(3)
6	Draw the figure showing specimen interaction of Scanning Electron	(2)
	Microscope.	(3)
7	Explain modulation doped quantum wells, with the aid of energy band	(3)
	diagram.	
8	Explain the concept of hot electrons in parallel transport	(3)
9	Explain resonant tunnelling effect.	(3)
10	List any six properties of Graphene.	(3)
	PART B	

(Answer one full question from each module, each question carries 14 marks)

Module -1

- 11 a) Derive the expression for density of states in a 1D nano material (9)
 - b) Consider an electron having kinetic energy 5eV and effective mass $0.511m_0$. (5) Calculate its De-Broglie wavelength. If the size of the measoscopic structure having this electron is in the range of $2x10^{-14}$ m, will it fall in the category of nanostructures?
- 12 a) Explain the physical limitations in reducing the size of devices in Nano scale. (6)
 - b) Explain the classifications of the nanostructures in detail

02000ECT292072101

Module -2

13	a)	Explain the different steps involved in a CVD technique for fabricating nano	(9)
		layers.	
	b)	Explain reduction method for fabricating metallic nano particles	(5)
14	a)	Explain sol-gel process for fabrication of nano-particles.	(9)
	b)	Explain laser beam ablation method for fabricating nano layers	(5)
		Module -3	
15	a)	Illustrate the principle of imaging using STM	(9)
	b)	Explain the working of XRD analyzer and how it can be used to analyze a	(5)
		crystal.	
16		Explain the principle of operation and operating modes of AFM	(14)
		Module -4	
17	(a)	Explain coulomb blockade effect. Explain the conditions to be satisfied to	(10)
18		observe coulomb blockade effect	(10)
	(b)	Compare MQW with superlattice structure.	(4)
	a)	Explain resonant tunnelling effect in quantum structure.	(8)
	b)	Explain the Shubnikov-de Hass effect of magnetic fields in 2D systems.	(6)
		Module -5	
19	a)	Draw the schematic and explain the working of a single electron transistor	(8)
	b)	Explain Hot Electron Transistors	(6)
20	a)	With the help of a neat schematic diagram explain MODFETs.	(8)
	b)	Illustrate the working of Quantum dot laser.	(6)
