Reg No.:_____ Name:___

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth Semester B.Tech Degree Regular and Supplementary Examination July 2021

		Course Code: EC368	
		Course Name: ROBOTICS	
M	ax. l	Marks: 100 Duration: 3	3 Hours
		PART A	M 1
1	۵)	Answer any two full questions, each carries 15 marks	Marks
1	a)	Define the term degrees of freedom and explain six degrees of freedom	(8)
		associated with robot.	
	b)	Describe the TLL robot configuration with neat sketch.	(7)
2	a)	Illustrate the working of strain gauge-based force sensor using Wheatstone	(8)
		bridge setup.	
	b)	Compare hydraulic, electric, and pneumatic actuators.	(7)
3	a)	With the help of torque speed characteristic explain the working of servomotor.	(7)
	b)	Explain different types of joints with the help of neat sketches.	(8)
		PART B	
		Answer any two full questions, each carries 15 marks	
4	a)	Explain the functions of a machine vision system with the help of block diagram	(10)
	b)	Find the new location of point $P(1, 2,3)^{T}$ relative to the reference frame after a	(5)
		rotation of 30 ⁰ about the z-axis followed by a rotation of 60 ⁰ about the y-axis.	
5	a)	A frame B is rotated 90° about the z-axis, then translated 3 and 5 units relative to	(8)
		the n and o -axes respectively, then rotated another 90^{0} about the n -axis, and	
		finally, 90^0 about the y-axis. Find the new location and orientation of the frame	
		[0 1 0 1]	
		$B = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$	
		$ \begin{bmatrix} 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} $	
	b)	Explain the steps to be followed for the implementation of Denavit- Hartenberg	(7)
	0)	representation.	(,,
6	٥)		(0)
6	a)	Explain the three phases involved in analog to digital signal conversion. Derive the metrix representing PPV orientation.	(9) (6)
	n	LIONING THE MOTHLY POSPECENTING HILV CHIESTON	161

- - Derive the matrix representing RPY orientation. (6)

03000EC368052101

PART C

7	a)	Answer any two full questions, each carries 20 marks Derive the Jacobian operator for linear and angular velocity of end-effector.	(10)
	b)	Explain about Lagrangian mechanics. How will you derive dynamic model of	(5)
		robot?	
	c)	What is PID control? What are the main advantages of PID control?	(5)
8	a)	Explain the robot language structure with a block diagram.	(10)
	b)	Distinguish textual and lead through programming.	(5)
	c)	Mention end-effector and motion commands in VAL programming language.	(5)
9	a)	Explain in detail about different control schemes of robots.	(10)
	b)	Explain the use of robots in industrial applications.	(10)
