Reg No.:_____ Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree Examination December 2020 (2019 Scheme)

Course Code: MAT203

Course Name: Discrete Mathematical Structures

Max. Marks: 100 Duration: 3 Hours

	PART A	
	Answer all questions. Each question carries 3 marks	Marks
1	Without using truth tables, show that	(3)
	$p \to (q \to r) \equiv p \to (\sim q \lor r) \equiv (p \land q) \to r$	
2	Define the terms: Converse, Inverse and Contrapositive.	(3)
3	What is Pigeonhole Principle? Given a group of 100 people, at minimum,	(3)
	how many people were born in the same month?	
4	In how many ways can the letters of the word 'MATHEMATICS' be	(3)
	arranged such that vowels must always come together?	
5	If $A = \{1,2,3,4\}$, give an example of a relation on A which is reflexive and	(3)
	transitive, but not symmetric.	
6	Define a complete lattice. Give an example.	(3)
7	Define a recurrence relation. Give an example.	(3)
8	Determine the coefficient of x^{15} in $f(x) = (x^2 + x^3 + x^4 +)^4$	(3)
9	Define semi-group. Give an example.	(3)
10	Show that the set of idempotent elements of any commutative monoid forms	(3)
	a submonoid.	

PART B

Answer any one full question from each module. Each question carries 14 marks

Module 1

- 11(a) Check whether the propositions $p \land (\sim q \lor r)$ and $p \lor (q \land \sim r)$ are logically equivalent or not. (6)
 - (b) Check the validity of the statement (8)

$$p \to q$$

$$q \to (r \land s)$$

$$\sim r \lor (\sim t \lor u)$$

0800MAT203122001

p∧*t*∴ *u*

12(a) Show that $((p \to q) \land (q \to r)) \to (p \to r)$ is a tautology.

(6)

(b) Let p, q, r be the statements given as

(8)

p: Arjun studies. q: He plays cricket. r: He passes Data Structures.

Let p_1 , p_2 , p_3 denote the premises

 p_1 : If Arjun studies, then he will pass Data Structures.

 p_2 : If he doesn't play cricket, then he will study.

 p_3 : He failed Data Structures.

Determine whether the argument $(p_1 \land p_2 \land p_3) \rightarrow q$ is valid.

Module 2

- 13(a) State Binomial theorem. Find the coefficient of xyz^2 in $(2x y z)^4$ (6)
 - (b) Determine the number of positive integers n such that $1 \le n \le 100$ and n is not divisible by 2,3 or 5. (8)
- 14(a) Prove that if 7 distinct numbers are selected from {1,2,3, ...,11}, then sum of two among them is 12.
 - (b) An urn contains 15 balls, 8 of which are red and 7 are black. In how many ways can 5 balls be chosen so that (i)all the five are red (ii)all the five are black (iii) 2 are red and 3 are black (iv)3 are red and 2 are black.

Module 3

- 15(a) If f, g and h are functions on integers, $f(n) = n^2$, g(n) = n + 1, (6) h(n) = n 1, then find (i) $f^{\circ}g^{\circ}h$ (ii) $g^{\circ}f^{\circ}h$ (iii) $h^{\circ}f^{\circ}g$
 - (b) If $A = \{a, b, c\}$ and P(A) be its power set. The relation \leq be the subset (8) relation defined on the power set. Draw the Hasse diagram of $(P(A), \leq)$.
- 16(a) Let R be a relation on Z by xRy if 4|(x-y). Then find all equivalence (6) classes.
 - (b) Find the complement of each element in D_{42} . (8)

Module 4

- 17(a) Solve the recurrence relation $a_{n+1} = 2a_n + 1$, $n \ge 0$, $a_0 = 0$. (6)
 - (b) Solve the recurrence relation $a_{n+2} = a_{n+1} + a_n$, $n \ge 0$, $a_0 = 0$, $a_1 = 1$ (8)

0800MAT203122001

18(a)	Solve the recurrence relation $a_{n+2} - 4a_{n+1} + 3a_n = -200$, $n \ge 0$,	(6)
	$a_0 = 3000, a_1 = 3300$	

(b) Solve the recurrence relation $a_n=2a_{n-1}-4a_{n-2}$, $n\geq 3$, $a_1=2$, $a_2=0$ (8)

Module 5

- 19(a) If $f: (R^+, {}^\circ) \to (R, +)$ as f(x) = lnx, where R^+ is the set of positive real (6) numbers. Show that f is a monoid isomorphism from R^+ onto R.
 - (b) Show that every subgroup of a cyclic group is cyclic. (8)
- 20(a) State and prove Lagrange's Theorem. (6)
 - (b) If $A = \{1,2,3\}$. List all permutations on A and prove that it is a group. (8)