Reg No.:____

Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

First Semester B.Tech Degree Regular and Supplementary Examination December 2023 (2019 scheme)

Course Code: MAT 101 Course Name: LINEAR ALGEBRA AND CALCULUS (2019 -Scheme)

Max. Marks: 100

Duration: 3 Hours

	г	Duration: 5 Hours	
		PART A	
		Answer all questions, each carries 3 marks	Marks
1		Find the rank of the matrix $\begin{bmatrix} 3 & 5 & 0 \\ 0 & 0 & 5 \\ 5 & 0 & 0 \end{bmatrix}$	(3)
2		Show that the quadratic form $Q = 3x_1^2 + 22x_1x_2 + 3x_2^2$ is indefinite.	(3)
3		Find $f_x(1,3)$ and $f_y(1,3)$ if $f(x,y) = 2x^3y^2 + 2y + 4x$.	(3)
4		If $z = x^2 y^2$ where $x = t^4$, $y = t^3$ find $\frac{dz}{dt}$ using chain rule.	(3)
5		Evaluate $\int_{0}^{1} \int_{0}^{2} (x+5) dy dx.$	(3)
6		Evaluate $\iint_R \frac{\sin x}{x} dA$, where R is the triangular region bounded by the x -axis, $y = x$ and $x = 1$.	(3)
7		Determine whether the series $\sum_{k=1}^{\infty} \left(-\frac{3}{5}\right)^k$ converges and if so find its sum	(3)
8		Examine the convergence of $\sum_{k=1}^{\infty} \frac{4^k}{k^2}$	(3)
9		Find the Taylor series expansion of $f(x) = \frac{1}{x}$ about $x = -1$	(3)
10		Find the half range sine series representation of $f(x) = k$ in $(0, \pi)$	(3)
PART B			
		Answer one full question from each module, each question carries 14 marks.	
MODULE 1			
11	a	Solve the following linear system of equations using Gauss elimination method x + y - z = 9 8y + 6z = -6 -2x + 4y - 6z = 40	(7)
	b	Find the eigenvalues and eigenvectors of $\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$	(7)

0100MAT101032201

12 a Solve the following linear system of equations using Gauss elimination method. (7) 3x - 11y - 2z = -6 4y + 4z = 24 6x - 17y + z = 18(7)

^b Find the matrix of transformation that diagonalize the matrix $A = \begin{bmatrix} 2 & 4 \\ 4 & 2 \end{bmatrix}$. Also (7) write the diagonal matrix.

MODULE 2

- 13 a If $w = x^2 + y^2 z^2$ where $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$. Find (7) $\frac{\partial w}{\partial \rho}$ and $\frac{\partial w}{\partial \theta}$ using chain rule.
 - b Locate all relative extrema and saddle points of (7) $f(x,y) = x^3 + 2yy^2 - 15y^2 + 72y$

$$f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$$

- 14 a Show that the function $f(x, y) = 2 \tan^{-1}(\frac{y}{x})$ satisfies the Laplace equation (7) $f_{xx} + f_{yy} = 0.$
 - b Find the local linear approximation L of $f(x, y) = \ln (xy)$ at the point P(1, 2). (7) Compute the error in approximation f by L at the point Q(1.01, 2.01).

MODULE 3

15 a Evaluate $\iint_R (3x - 2y) dA$, where R is the region enclosed by the circle (7)

$$x^2 + y^2 = 1.$$

^b Evaluate $\int_0^1 \int_{4x}^4 e^{-y^2} dy \, dx$ by reversing the order of integration. (7)

¹⁶ a Evaluate
$$\int_0^2 \int_0^{\sqrt{4-x^2}} y(x^2 + y^2) dx dy$$
 using polar coordinates. (7)

b Let G be the tetrahedron in the first octant bounded by the coordinate planes and (7) the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, (*a*, *b*, *c* > 0) find the volume of G.

MODULE 4

¹⁷ a Test the convergence of (i)
$$\sum_{k=1}^{\infty} \frac{4k^2 - 2k + 6}{8k^7 + k - 8}$$
 (ii) $\sum_{k=1}^{\infty} \left(\frac{k+1}{k}\right)^{k^2}$ (7)

^b Test the convergence of the series $1 + \frac{1.2}{1.3} + \frac{1.2.3}{1.3.5} + \frac{1.2.3.4}{1.3.5.7} + \dots \dots \dots (7)$

¹⁸ a Show that the series
$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k+3}{k(k+1)}$$
 is conditionally convergent (7)

^b Test the convergence of (i)
$$\sum_{k=1}^{\infty} \frac{(k+3)!}{3! \ k! \ 3^k}$$
 (ii) $\sum_{k=1}^{\infty} \frac{1}{\sqrt[3]{2k-1}}$ (7)

MODULE 5

19 a Find the Fourier series expansion of $f(x) = x + x^2$ in the range $(-\pi, \pi)$. (7)

0100MAT101032201

- b Obtain the half range Fourier sine series of $f(x) = \begin{cases} x, & 0 < x < 2 \\ 4 x, & 2 < x < 4 \end{cases}$ (7)
- 20 a Find the Fourier series expansion of f(x) = |x| in the range $(-\pi, \pi)$. Hence (7) show that $1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$
 - b Obtain the half range Fourier cosine series of $f(x) = x^2$ in 0 < x < 2 (7)
