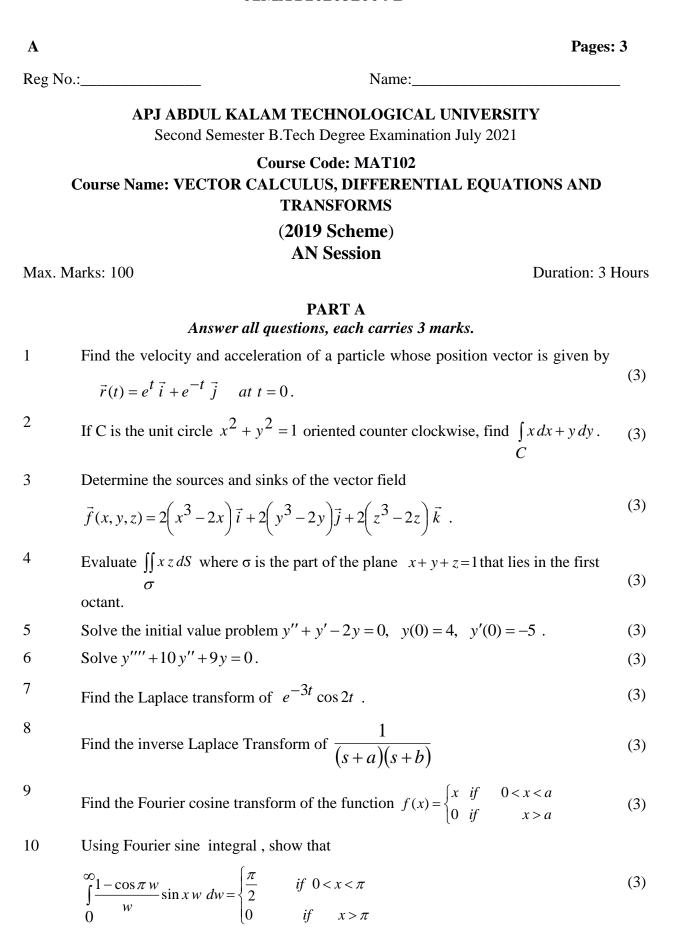
01MAT102052004 B



01MAT102052004 B

PART B

Answer one full question from each module, each question carries 14 marks

Module-I

- Find the directional derivative of $\varphi(x, y, z) = x^3 z y x^2 + z^2$ at (1,1,1) in the direction of $\vec{a} = 2\vec{i} \vec{j} + 2\vec{k}$. Also find the maximum directional derivative. (7)
 - Show that the vector field $\vec{f}(x, y) = xy^2 \vec{i} + x^2 y \vec{j}$ is conservative and find ϕ such that $\vec{f} = \nabla \phi$. Hence evaluate $\int_{(1,2)}^{(2,4)} xy^2 dx + x^2 y dy$. (7)
- 12 a) Find the parametric equation of the tangent line to the graph $\vec{r}(t) = t^2 \vec{i} \frac{1}{t+3} \vec{j} + (4-t^2) \vec{k} \quad \text{at} \quad (4,-1,0). \tag{7}$
 - Using line integral evaluate $\int x^2 y \, dx + x \, dy$ where C is the triangular path C (7) connecting (0,0), (1,0) and (1,2) in the positive direction.

Module-II

- Use Green's theorem to evaluate $\int \log(1+y) dx \frac{xy}{1+y} dy$ where C is the triangle with vertices (0,0),(2,0) and (0,4). (7)
 - b) Use Divergence theorem to find the outward flux of the vector filed $\vec{F} = (2x + y^2)\vec{i} + xy\vec{j} + (xy 2z)\vec{k}$ across the surface of the tetrahedron bounded by x + y + z = 2 and the coordinate planes. (7)
- 14 a) Find the flux of the vector field $\vec{F}(x, y, z) = x\vec{k}$ across the surface, the portion of the paraboloid $z = x^2 + y^2$ below the plane z = 2y oriented by downward unit normal
 - b) Use Stokes theorem evaluate $\oint \vec{f} \cdot dr$ where C $\vec{f}(x, y, z) = (z y)\vec{i} + (z + x)\vec{j} (x + y)\vec{k} \text{ and C is the boundary of the}$ paraboloid $z = 9 x^2 y^2$ above the XY-plane with upward orientation. (7)

Module-III

- 15 a) Solve using the method of undetermined coefficients $y'' 4y' 5y = 4\cos 2x$. (7)
 - b) Solve using the Method of variation of parameters $y'' + y = \csc x$ (7)

01MAT102052004 B

- 16 a) Solve using the method of undetermined coefficients $y'' 7y' + 12y = e^{2x}, \quad y(0) = 1, \quad y'(0) = 2. \tag{7}$
 - b) Solve the boundary value problem $x^2y'' 3xy' + 4y = 0$, y(1) = 0, y'(1) = 1 (7)

Module-IV

- Using convolution theorem find the Laplace inverse of $\frac{2}{\left(s^2+1\right)\left(s^2+25\right)}$ (7)
 - b) Using Laplace Transform solve $y'' + 2y' + y = e^{-t}$ y(0) = 0, y'(0) = 1 (7)
- 18 a) Express in terms of unit step function and hence find the Laplace Transform of

$$f(t) = \begin{cases} t^2, & if & 0 < t < 2 \\ t - 1 & if & 2 < t < 3 \\ 7 & if & t > 3 \end{cases}$$
 (7)

b) Find the inverse Laplace Transform of $\frac{s^2 + 2}{s(s^2 + 9)}$ (7)

Module-V

- 19 a) Find the Fourier Transform of $f(x) = \begin{cases} |x| & \text{if } -1 < x < 1 \\ 0 & \text{otherwise} \end{cases}$ (7)
 - b) Find the Fourier integral of $f(x) = \begin{cases} \pi x & \text{if } 0 < x < \pi \\ 0 & \text{otherwise} \end{cases}$ (7)
- 20 a)
 Find the Fourier Sine Transform of $f(x) = \begin{cases} x & \text{if } 0 < x < 1 \\ 3 x & \text{if } 1 < x < 3 \\ 0 & \text{if } x > 3 \end{cases}$ (7)
 - b) Represent $f(x) = e^{-kx}$ x > 0, k > 0 as a Fourier Cosine integral (7)