Reg No.:_

Name:__

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Second Semester B.Tech Degree Examination July 2021 (2019 scheme)

Course Code: MAT102 Course Name: VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS (2019 Scheme) **FN Session**

Max. Marks: 100

Duration: 3 Hours

PART A

Answer all questions, each carries 3 marks.

Answer au questions, each carries 5 marks.			
1	Find the unit tangent vector at a point $t_0 = \frac{\pi}{6}$ to the curve	(3)	
	$\bar{\boldsymbol{r}}(t) = \cos 3t \hat{\boldsymbol{\imath}} + \sin 3t \hat{\boldsymbol{\jmath}} + 3t \hat{\boldsymbol{k}}.$	(-)	
2	Find the directional derivative of the function $\varphi = 3x^2y - y^3z^2$ at	(3)	
	(-1, -2, -1) in the direction of negative z axis.		
3	Using Green's Theorem evaluate $\int_C 2xy dx + (x^2 + x) dy$ where C is the unit aircle in the positive direction	(3)	
	circle in the positive direction.		
4	Determine whether the vector field $\vec{F}(x, y, z) = (y + z)\hat{\imath} - (xz^3)\hat{\jmath} + (x^2siny)\hat{k}$	(3)	
	is free of sources and sinks.	(-)	
5	Solve the initial value problem $y'' + y = 0$: $y(0) = 3$, $y'(0) = 1$.	(3)	
6	Find the Wronskian corresponding to the solution of $y'' - 3y' + 2y = 0$.	(3)	
7	Find the Laplace Transform of <i>sin3t cos2t</i> .	(3)	
8	Evaluate $L^{-1}\left[\frac{2}{\left(s+4\right)^3}\right]$.	(3)	
9	Find the Fourier cosine transform of the function $f(x) = \begin{cases} k, & 0 < x < a \\ 0, & x > a \end{cases}$	(3)	
10	Express $f(x) = \begin{cases} \frac{1}{2}, & 0 < x < \pi \\ 0, & x > \pi \end{cases}$ as a Fourier sine integral.	(3)	

PART B

Answer one full question from each module, each question carries 14 marks

Module-I

11 a) Use a line integral to evaluate the work done by the force field $\vec{F} = xy^2\hat{\imath} + xy\hat{\jmath}$ (7) along the triangle with vertices (0,0), (2,1) and (0,1) in the positive direction.

01MAT102052001 A

- b) Use the given information to find the position and velocity vectors of the particle (7) with acceleration $\vec{a}(t) = -\cos t \,\hat{\imath} - \sin t \,\hat{\jmath}$, $\vec{v}(0) = \hat{\imath}$, $\vec{r}(0) = \hat{\jmath}$
- 12 a) Evaluate $\int_C (xyz)dx \cos(yz) dy$ where C is the straight line segment from ⁽⁷⁾ (1, 1, 1) to (-2, 1, 3).
 - b) Show that the vector field $\overrightarrow{F}(x, y) = \cos y \,\hat{\imath} x \sin y \,\hat{\jmath}$ is conservative and find (7) φ such that $\overrightarrow{F} = \nabla \varphi$. Hence evaluate $\int_{(0,1)}^{(\pi,0)} \cos y \, dx - x \sin y \, dy$

Module-II

- 13 a) Using divergence theorem, evaluate $\iint_{\sigma} \vec{F} \cdot \hat{n} \, dS$, where $\vec{F}(x, y, z) = (x^2 + y) \,\hat{\imath} + z^2 \hat{\jmath} + (e^y - z) \hat{k}$ and σ is the surface of rectangular ⁽⁷⁾ cube bounded by the coordinate planes and the plane x = 3, y = 1, z = 3.
 - b) Use Stoke's Theorem to evaluate the work done by the force field $\vec{F}(x, y, z) = 3z \hat{i} + 4x \hat{j} + 2y\hat{k}$ over the boundary of the paraboloid (7) $z = 4 - x^2 - y^2, z \ge 0$ with upward orientation.
- 14 a) Let σ be the portion of the surface $z = 1 x^2 y^2$ that lies above the xy -plane and σ is the oriented upwards. Find the flux of the vector field (7) $\vec{F}(x, y, z) = x \hat{i} + y \hat{j} + z\hat{k}$ across σ .
 - b) Find the mass of the lamina that is the portion of the plane x + y + z = 2 lying in the first octant where the density function of the surface is $\sigma = xz$. (7)

Module-III

- 15 a) Solve using the method of undetermined coefficients: y" 4y' + 4y = 4sin²x. (7)
 b) Solve using the method of variation of parameters: y" + 4y = sec 2 x. (7)
- 16 a) Solve using the method of undetermined coefficients: $y''' + 2y'' y' 2y = e^x$. (7)
 - b) Solve the initial value problem $x^2y'' 3xy' + 3y = 0, y(1) = 0, y'(1) = 1.$ (7)

Module-IV

- 17 a) Using Laplace Transform solve $y'' + 4y' + 3y = e^{-t}, y(0) = 1, y'(0) = 1.$ (7)
 - b) Using convolution theorem, find the inverse Laplace Transform of $\frac{18s}{(s^2+36)^2}$ (7)
- 18 a) Use Laplace Transform to solve y'' + 3y' + 2y = u(t 1), y(0) = 0, y'(0) = 0 (7)

b) Evaluate
$$L^{-1}\left[\frac{2s+1}{s^2+2s+5}\right]$$
 (7)

01MAT102052001 A

Module-V

19	a)	(1 if w - 1)	
17	a)	Find the Fourier integral representation of the function $f(x) = \begin{cases} 1, & \text{if } x < 1 \\ 0, & \text{if } x > 1 \end{cases}$	(7)
		Find the Fourier transform of $f(x) = e^{- x }, -\infty < x < \infty$	(7)
20	a)	Represent $f(x) = \begin{cases} \sin x , 0 < x < \pi \\ 0, x > \pi \end{cases}$ as Fourier Cosine Integral.	(7)
	b)		
		Find the Fourier sine transform of the function $f(x) = \begin{cases} 1, & 0 < x < 1 \\ -1, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$	(7)

		Page 3 of 3	